Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

The influence of the choice of digestion enzyme used to prepare rat hepatocytes on xenobiotic uptake and efflux

Sinclair, J.A. and Henderson, C. and Tettey, J.N.A. and Grant, M.H. (2013) The influence of the choice of digestion enzyme used to prepare rat hepatocytes on xenobiotic uptake and efflux. Toxicology in Vitro, 27 (1). pp. 451-457. ISSN 0887-2333

Full text not available in this repository. Request a copy from the Strathclyde author


Isolated rat hepatocytes are widely used to assess the metabolism and toxicity of xenobiotics. The choice of digestion enzyme used to prepare the cells has been shown previously to influence their metabolic capability. This study investigates the effect of the digestion enzyme (collagenase II, collagenase A/trypsin inhibitor, or collagenase plus dispase) on the uptake of xenobiotics into, and efflux from, hepatocytes. The choice of digestion enzymes used in this study does not affect uptake of either pravastatin (an organic anion probe substrate for Oatp transporter) or metformin (an organic cation probe substrate for Oct transporter). With regard to efflux transporters, hepatocyte differentiation was better maintained when cells were isolated using collagenase II alone.