Laser acceleration of protons using multi-ion plasma gaseous targets
Liu, Tung-Chang and Shao, Xi and Liu, Chuan-Sheng and Eliasson, Bengt and Hill III, W T and Wang, Jyhpyng and Chen, Shih-Hung (2015) Laser acceleration of protons using multi-ion plasma gaseous targets. New Journal of Physics, 17 (2). 023018. ISSN 1367-2630 (https://doi.org/10.1088/1367-2630/17/2/023018)
Preview |
PDF.
Filename: Liu_etal_NJOP_2015_Laser_acceleration_of_protons_using_multi_ion_plasma_gaseous_targets.pdf
Final Published Version License: Download (2MB)| Preview |
Abstract
We present a theoretical and numerical study of the novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO2 laser pulse with a wavelength of 10 μm, much greater than that of a Ti:Sapphire laser, the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such a laser beam on a carbon-hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with peak power 70 TW and pulse duration of 150 wave periods.
ORCID iDs
Liu, Tung-Chang, Shao, Xi, Liu, Chuan-Sheng, Eliasson, Bengt ORCID: https://orcid.org/0000-0001-6039-1574, Hill III, W T, Wang, Jyhpyng and Chen, Shih-Hung;-
-
Item type: Article ID code: 50898 Dates: DateEvent4 February 2015Published2 January 2015AcceptedSubjects: Science > Physics Department: Faculty of Science > Physics Depositing user: Pure Administrator Date deposited: 05 Jan 2015 16:05 Last modified: 06 Jan 2025 07:35 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/50898