Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Simplified lower bound limit analysis of transversely loaded thin plates using generalised yield criteria

Hamilton, R. and Boyle, James (2002) Simplified lower bound limit analysis of transversely loaded thin plates using generalised yield criteria. Thin-Walled Structures, 40 (6). pp. 503-522. ISSN 0263-8231

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper a simple method of deriving lower bound limit loads for thin plates is presented. This method is based on the method of elastic compensation, an iterative elastic technique, which has recently been extended to allow the analysis of structures using thin shell finite element analysis using generalised yield criteria. Here the method is modified to allow analysis of plates, including the effects of transverse shear. The elastic compensation method, combined with generalised yield criteria, is implemented using the finite element numerical analysis technique. Convergence studies are carried out and limit loads are obtained for a range of geometries, boundary conditions and loading. The calculated limit loads are compared with results available in the literature and with new elasto-plastic results and show that the method can be used to quickly obtain practical results.