Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Coupled analysis of floating structures with a new mooring system

Yuan, Zhiming and Ji, Chunyan and Chen, MingLu and Zhang, Yun (2011) Coupled analysis of floating structures with a new mooring system. In: ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASME, pp. 489-496. ISBN 978-0-7918-4438-0

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

As the exploitation of hydrocarbon reserves moves towards deeper waters, the floating structures are becoming more and more popular, and the catenary and taut mooring systems are two widespread mooring systems which are used for these floating structures. However, both of them have their inherent drawbacks. The aim of the present work is to develop and validate a new mooring system which will overcome these shortcomings. To this end, the motion performance of a semi-submersible platform is simulated by employing a full time domain coupled analysis method. It is shown that the new mooring system yields very good motion performance when benchmarked against the taut mooring system, and the reasons for this improved performance are discussed. Also, the new mooring system is compatible with the characteristic of catenary mooring system, which eliminates the requirement of anti-uplift capacity of the anchors. The second aim of this paper is to explore the proper water depth in employing this new mooring system. For this purpose, several typical water depths are simulated. It is found that the new mooring system works well both in deep water and ultra-deep water. But, as the water depth becomes deeper, the advantages of the new mooring system are reduced.