Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Performance of actively controlled domestic heat storage devices in a smart grid

Clarke, Joseph Andrew and Hand, Jon and Kim, Jae-min and Samuel, Aizaz and Svehla, Katalin (2015) Performance of actively controlled domestic heat storage devices in a smart grid. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 229 (1). pp. 99-110. ISSN 0957-6509

Text (Clarke-etal-JPE2014-Performance-domestic-heat-storage-devices-smartgrid)
Accepted Author Manuscript

Download (1MB) | Preview


Distributed, small-scale energy storage has been identified as a means of improving load factors for intermittent renewable generation and displacing the need for fossil-based backup. Domestic electric storage heaters operating within a smart grid offer high density, controllable energy storage at low cost, allowing the network operator to shift demand by charging heaters to dispose of excess supply. This paper reports monitoring outcomes and simulation studies on the first field trials of such a system, in which heaters are capable of responding to instructions from the grid to vary charging level at 15-min intervals, as well as to occupant-set controls on power output. Monitoring found significant unexpected out-of-schedule power draw and under-utilisation of storage capacity. Alternative approaches to scheduling were tested using simulations, and evaluated using metrics to quantify schedule following as well as other aspects of performance to give a balanced view of system performance to the network operator. Modern insulated storage heaters are capable of supporting load shifting for up to 48 h with minimal impact on room temperatures or demand, and with high confidence that charging schedules will be followed. However, where device controllers compete with centrally generated charge scheduling, the network will experience significant out-of-schedule power draw while occupants will experience either lower temperatures or increased cost.