Picture of smart phone

Open Access research that is better understanding human-computer interaction...

Strathprints makes available scholarly Open Access content by researchers in the Department of Computer & Information Sciences, including those researching information retrieval, information behaviour, user behaviour and ubiquitous computing.

The Department of Computer & Information Sciences hosts The Mobiquitous Lab, which investigates user behaviour on mobile devices and emerging ubiquitous computing paradigms. The Strathclyde iSchool Research Group specialises in understanding how people search for information and explores interactive search tools that support their information seeking and retrieval tasks, this also includes research into information behaviour and engagement.

Explore the Open Access research of The Mobiquitous Lab and the iSchool, or theDepartment of Computer & Information Sciences more generally. Or explore all of Strathclyde's Open Access research...

Homologues of LMPK, a mitogen-activated protein kinase from Leishmania mexicana, in different Leishmania species

Wiese, M and Görcke, I (2001) Homologues of LMPK, a mitogen-activated protein kinase from Leishmania mexicana, in different Leishmania species. Medical Microbiology and Immunology, 190 (1-2). pp. 19-22. ISSN 0300-8584

Full text not available in this repository. Request a copy from the Strathclyde author


LMPK, a mitogen-activated protein (MAP) kinase homologue of Leishmania mexicana, is essential for the proliferation of the amastigote, the mammalian stage of the protozoan parasite. This has been demonstrated using deletion mutant promastigotes, the insect stage of the parasite: first, in vitro after differentiation to amastigotes, which subsequently lost their potential to proliferate; second, by infection of peritoneal macrophages, which were able to cope with the infection and cleared the parasites; third, by infection of BALB/c mice, which showed no lesion development. The lmpk deletion mutant promastigotes are a potential live vaccine because they infect macrophages, transform to amastigotes and deliver amastigote antigens to raise an immune response without causing the disease. In addition, inhibition of LMPK in a wild-type infection is likely to resolve the disease and as such, is an ideal target for drug development against leishmaniasis. Here we investigated the presence and copy number of lmpk homologues in Leishmania amazonensis, L. major, L. tropica, L. aethiopica, L. donovani, L. infantum, and L. braziliensis and discuss the results with regard to drug development and vaccination using kinase deletion mutants.