The internal mechanics of the intervertebral disc under cyclic loading
Riches, P.E. and Dhillon, N. and Lotz, J. and Woods, A.W. and McNally, D.S. (2002) The internal mechanics of the intervertebral disc under cyclic loading. Journal of Biomechanics, 35 (9). pp. 1263-1271. ISSN 0021-9290 (http://dx.doi.org/10.1016/S0021-9290(02)00070-2)
Full text not available in this repository.Request a copyAbstract
The mechanics of the intervertebral disc (IVD) under cyclic loading are investigated via a one-dimensional poroelastic model and experiment. The poroelastic model, based on that of Biot (J. Appl. Phys. 12 (1941) 155; J. Appl. Mech. 23 (1956) 91), includes a power-law relation between porosity and permeability, and a linear relation between the osmotic potential and solidity. The model was fitted to experimental data of the unconfined IVD undergoing 5 cyclic loads of 20 min compression by an applied stress of 1 MPa, followed by 40 min expansion. To obtain a good agreement between experiment and theory, the initial elastic deformation of the IVD, possibly associated with the bulging of the IVD into the vertebral bodies or laterally, was removed from the experimental data. Many combinations of the permeability-porosity relationship with the initial osmotic potential (πi) were investigated, and the best-fit parameters for the aggregate modulus (HA) and initial permeability (ki) were determined. The values of HA and ki were compared to literature values, and agreed well especially in the context of the adopted high-stress testing regime, and the strain related permeability in the model.
ORCID iDs
Riches, P.E. ORCID: https://orcid.org/0000-0002-7708-4607, Dhillon, N., Lotz, J., Woods, A.W. and McNally, D.S.;-
-
Item type: Article ID code: 4935 Dates: DateEvent2002PublishedSubjects: Medicine > Pharmacy and materia medica
Science > PhysiologyDepartment: Faculty of Engineering > Bioengineering Depositing user: Strathprints Administrator Date deposited: 30 Nov 2007 Last modified: 11 Nov 2024 08:38 URI: https://strathprints.strath.ac.uk/id/eprint/4935