Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Numerical and experimental study of mass transfer in lysozyme ultrafiltration

Magueijo, Vítor and De Pinho, Maria Norberta and Geraldes, Vítor (2002) Numerical and experimental study of mass transfer in lysozyme ultrafiltration. Desalination, 145 (1-3). pp. 193-199. ISSN 0011-9164

Full text not available in this repository.Request a copy from the Strathclyde author


This paper addresses protein ultrafiltration (UF) and its dependence on UF operating conditions. Cellulose acetate (CA) asymmetric membranes are laboratory made by the phase-inversion method and characterized in terms of pure water permeability, 8.8×10-12 m/s/Pa, and molecular weight cut-off (10000 Da for 98% of rejection). The important feature of the permeation cell is the slit feed channel of 200 mm×30 mm×1.2 mm that simulates the two-dimensional hydrodynamic flow conditions in a spiral wound membrane module. Permeation experiments were carried out for solutions of reference solutes in order to characterize the membranes and for lysozyme solutions under different operating conditions. The influence of the ionic strength in the permeation flux and protein rejection is studied by performing permeation tests with a solution of lysozyme (0.3 kg/m3) containing different NaCl concentrations. Experimentally was observed a decline in the permeate flux with increasing ionic strength. The membrane is almost completely retentive in relation to lysozyme, since the apparent rejection coefficient,f, for this protein is always higher than 95% (in almost all cases, higher than 98%). Two distinct sets of CFD simulations were performed. One to predict the permeation velocities, vp, and another to predict the lysozyme concentration polarization.