Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Recognition of the DNA minor groove by thiazotropsin analogues

Alniss, Hasan Y. and Salvia, Marie Virginie and Sadikov, Mykhailo and Golovchenko, Igor and Anthony, Nahoum G. and Khalaf, Abedawn I. and MacKay, Simon P. and Suckling, Colin J. and Parkinson, John A. (2014) Recognition of the DNA minor groove by thiazotropsin analogues. Chembiochem, 15 (13). 1978–1990. ISSN 1439-4227

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Solution-phase self-association characteristics and DNA molecular recognition properties are reported for three close analogues of minor groove binding ligands from the thiazotropsin class of lexitropsin molecules, which incorporate isopropyl thiazole as a lipophilic building block. Thiazotropsin B (AcImPyiPrThDp) shows similar self-assembly characteristics to thiazotropsin A (FoPyPyiPrThDp) although being engineered, by incorporation of imidazole in place of N-methyl pyrrole, to swap its DNA recognition target from 5´-ACTAGT-3´ to 5´-ACGCGT-3´. Replacement of the formamide head-group in thiazotropsin A by nicotinamide in AIK-18/51 results in a measureable difference in solution phase self-assembly character and substantially enhanced DNA association characteristics. The structures and associated thermodynamic parameters of self-assembled ligand aggregates and their complexes with respective DNA targets are considered in the context of cluster targeting of DNA by minor groove complexes.