Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control

MacLean, Michelle and McKenzie, Karen and Anderson, John and Gettinby, George and MacGregor, Scott (2014) 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. Journal of Hospital Infection. ISSN 0195-6701

[img]
Preview
PDF (MacleanetalJHI2014-405-nm-light-technology)
DOI_10.1016_j.jhin.2014.06.004_accepted_manuscript.pdf
Accepted Author Manuscript

Download (910kB) | Preview

Abstract

Background: Although the germicidal properties of ultraviolet (UV) light have long been known, it is only comparatively recently that the antimicrobial properties of visible violet–blue 405 nm light have been discovered and used for environmental disinfection and infection control applications. Aim: To review the antimicrobial properties of 405 nm light and to describe its application as an environmental decontamination technology with particular reference to disinfection of the hospital environment. Methods: Extensive literature searches for relevant scientific papers and reports. Findings: A large body of scientific evidence is now available that provides underpinning knowledge of the 405 nm light-induced photodynamic inactivation process involved in the destruction of a wide range of prokaryotic and eukaryotic microbial species, including resistant forms such as bacterial and fungal spores. For practical application, a high-intensity narrow-spectrum light environmental disinfection system (HINS-light EDS) has been developed and tested in hospital isolation rooms. The trial results have demonstrated that this 405 nm light system can provide continuous disinfection of air and exposed surfaces in occupied areas of the hospital, thereby substantially enhancing standard cleaning and infection control procedures. Conclusion: Violet–blue light, particularly 405 nm light, has significant antimicrobial properties against a wide range of bacterial and fungal pathogens and, although germicidal efficacy is lower than UV light, this limitation is offset by its facility for safe, continuous use in occupied environments. Promising results on disinfection efficacy have been obtained in hospital trials but the full impact of this technology on reduction of healthcare-associated infection has yet to be determined.