Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

A preliminary approach for modelling and planning the composition of engineering project teams

Coates, G. and Duffy, A.H.B. and Hills, W. and Whitfield, I. (2007) A preliminary approach for modelling and planning the composition of engineering project teams. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221 (7). pp. 1255-1265. ISSN 2041-2975

[img] PDF
14_1255_1266_Jem_608.pdf
Final Published Version
Restricted to Registered users only
License: Unspecified

Download (149kB) | Request a copy from the Strathclyde author

Abstract

Managing engineering projects is a complex activity involving multiskilled engineers, who have varying levels of capability in these skills. This paper outlines a preliminary approach to modelling and planning the composition of engineering project teams, taking into consideration the skills and capabilities of engineers and the nature of the project work to be undertaken. The approach includes a simple means of identifying engineers' skills and then quantifying their level of capability in these skills. Subsequently, the approach uses a genetic algorithm along with a task-to-engineer allocation strategy to establish how best to utilize the mix of skills and capabilities of the team of engineers assigned to the project under consideration. The approach also provides a means of identifying imbalances or shortfalls in skill and capability within a team, and the formulation of an appropriate development strategy to redress/overcome them. An application of the approach to an industrial case study is presented, which led to significant potential reductions in expected project duration and labour cost. These potential reductions could be achieved by appropriately modelling engineers' skills and capabilities, and redressing the imbalance within the team through proposed changes to its composition.