Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

Applying adversarial planning techniques to Go

Willmott, S. and Richardson, J. and Bundy, A. and Levine, J.M. (2001) Applying adversarial planning techniques to Go. Theoretical Computer Science, 252 (1). pp. 45-82. ISSN 0304-3975

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Approaches to computer game playing based on alpha-beta search of the tree of possible move sequences combined with a position evaluation function have been successful for many games, notably Chess. Such approaches are less successful for games with large search spaces and complex positions, such as Go, and we are led to seek alternatives. One such alternative is to model the goals of the players, and their strategies for achieving these goals. This approach means searching the space of possible goal expansions, typically much smaller than the space of move sequences. Previous attempts to apply these techniques to Go have been unable to provide results for anything other than a high strategic level or very open game positions. In this paper we describe how adversarial hierarchical task network planning can provide a framework for goal-directed game playing in Go which is also applicable both strategic and tactical problems.