Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Spherical molecularly imprinted polymer particles: A promising tool for molecular recognition in capillary electrokinetic separations

de Boer, T. and Mol, R. and de Zeeuw, R.A. and de Jong, G.J. and Sherrington, D.C. and Cormack, P.A.G. and Ensing, K. (2002) Spherical molecularly imprinted polymer particles: A promising tool for molecular recognition in capillary electrokinetic separations. Electrophoresis, 23 (9). pp. 1296-1300. ISSN 0173-0835

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Spherical molecularly imprinted polymer particles obtained via precipitation polymerization, were introduced as a pseudostationary phase in capillary electrophoresis (CE) to study molecular recognition. Analyses were performed via a partial filling technique using (+)-ephedrine-imprinted microspheres (100-200 nm) which were polymerized from methacrylic acid and 1,1,1-Tris(hydroxymethyl)propanetrimethacrylate using acetonitrile as the solvent. The influence of pH and the modifier content on the separation was investigated. A 0.1 % w/v suspension in an aqueous 10 mm phosphate buffer (pH 2.5 with 40% acetonitrile) was hydrodynamically injected into the CE system (80% of the effective capillary length) and led to full baseline separation of racemic ephedrine within 10 min.