Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Spherical molecularly imprinted polymer particles: A promising tool for molecular recognition in capillary electrokinetic separations

de Boer, T. and Mol, R. and de Zeeuw, R.A. and de Jong, G.J. and Sherrington, D.C. and Cormack, P.A.G. and Ensing, K. (2002) Spherical molecularly imprinted polymer particles: A promising tool for molecular recognition in capillary electrokinetic separations. Electrophoresis, 23 (9). pp. 1296-1300. ISSN 0173-0835

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Spherical molecularly imprinted polymer particles obtained via precipitation polymerization, were introduced as a pseudostationary phase in capillary electrophoresis (CE) to study molecular recognition. Analyses were performed via a partial filling technique using (+)-ephedrine-imprinted microspheres (100-200 nm) which were polymerized from methacrylic acid and 1,1,1-Tris(hydroxymethyl)propanetrimethacrylate using acetonitrile as the solvent. The influence of pH and the modifier content on the separation was investigated. A 0.1 % w/v suspension in an aqueous 10 mm phosphate buffer (pH 2.5 with 40% acetonitrile) was hydrodynamically injected into the CE system (80% of the effective capillary length) and led to full baseline separation of racemic ephedrine within 10 min.