Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Modelling the superplastic forming of a multi-sheet diffusion bonded titanium alloy demonstrator fan blade

Wood, Paul and Qarni, Muhammad Jawad and Blackwell, Paul and Cerny, Vladimir and Brennand, Phillip and Wilkinson, Steven and Rosochowski, Andrzej (2013) Modelling the superplastic forming of a multi-sheet diffusion bonded titanium alloy demonstrator fan blade. Materials Science Forum, 735. pp. 215-223. ISSN 1662-9760

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The paper describes a finite element method in 2D and 3D to simulate the super plastic forming of a demonstrator jet engine fan blade made from Titanium alloy sheet. The fan blade is an assembly of three sheets in which a single inner (core) sheet is diffusion bonded to the two outer (skin) sheets at prescribed zones, which is then super-plastically formed to a desired fan profile. In the model, the diffusion bonded zones between the core and skin sheets are simulated using tied interfaces. The thickness of each skin sheet is not uniform and significant change in thickness can occur over a short distance as well as gradually over the entire skin sheet. The thickness of the core sheet which is smaller than the thickness of each skin sheet remains uniform. The paper describes the design for a scaled-down demonstrator fan blade and model build process. Selected results and evaluations of finite element simulations are presented and discussed.