Mueller matrix holographic method for small particle characterization : theory and numerical studies

Gao, Meng and Yang, Ping and McKee, David and Kattawar, George W. (2013) Mueller matrix holographic method for small particle characterization : theory and numerical studies. Applied Optics, 52 (21). pp. 5289-5296. ISSN 0003-6935 (https://doi.org/10.1364/AO.52.005289)

Full text not available in this repository.Request a copy

Abstract

Holographic imaging has proved to be useful for spherical particle characterization, including the retrieval of particle size, refractive index, and 3D location. In this method, the interference pattern of the incident and scattered light fields is recorded by a camera and compared with the relevant Lorenz-Mie solutions. However, the method is limited to spherical particles, and the complete polarized scattering components have not been studied. This work extends the Mueller matrix formalism for the scattered light to describe the interference light field, and proposes a Mueller matrix holography method, through which complete polarization information can be obtained. The mathematical formalism of the holographic Mueller matrix is derived, and numerical examples of birefringent spheres are provided. The Mueller matrix holography method may provide a better opportunity than conventional methods to study anisotropic particles.

ORCID iDs

Gao, Meng, Yang, Ping, McKee, David ORCID logoORCID: https://orcid.org/0000-0001-8023-5923 and Kattawar, George W.;