Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Preliminary instability-analysis of deepwater riser with fairings

Khorasanchi, Mahdi and Huang, Shan (2009) Preliminary instability-analysis of deepwater riser with fairings. In: Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2009). ASME, pp. 285-291. ISBN 9780791843451

[img] PDF (285_1 (1))
285_1_1_.pdf
Final Published Version

Download (254kB)

Abstract

Instability of deepwater riser with fairings is investigated in this study. Despite the advantages over other devices for suppressing vortex-induced-vibration (VIV), fairings may be susceptible to flutter type instability. A two-body mathematical model is established for the coupled transverse-torsion motion of a top tensioned riser with fairings. The inner part (riser) can only move transversely while the outer part (fairing) has transverse-torsion motion. The effect of the transverse velocity on the angle of attack is taken into account and damping is considered for both degrees of freedom. An eigenvalue analysis is employed to examine the issue of stability. The emphasis is on identifying the critical current speed for a given riser and fairing configuration. The effects of key parameters are investigated and the results indicate that the section hydrodynamic characteristics of the fairings have a significant impact on the instability.