Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

In-plane switching of a homeotropically aligned, thin smectic C* liquid crystal

McKay, G. and Mackenzie, K.R. (2002) In-plane switching of a homeotropically aligned, thin smectic C* liquid crystal. Ferroelectrics, 277. pp. 107-116. ISSN 0015-0193

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Most early theoretical studies of smectic liquid crystals exclude variations in the interlayer spacing or changes in molecular tilt with respect to the smectic layer normal, e.g. Leslie et al . [1] Recently McKay and Leslie [2] presented a theory for smectics which does allow for variations in tilt. With this theory they modelled a smectic C liquid crystal confined in a cell, its layers coplanar with the boundary plates, but subject to strong anchoring incompatible with the smectic C tilt. Subsequently Mazzulla and Sambles [3] found good agreement between theoretical predictions using the theory and their experimental observations. We present a model similar to [2] which also allows a twist in the molecule profile across the thickness of the sample. We consider a thin sample of Sm C* liquid crystal at a temperature well below the Sm A-Sm C* phase transition. A twist profile is induced by incorporating an in-plane electric field (e.g. Oh-e and Kondo [4] ) into the model.