Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

An experimental investigation of work dissipation in crushable materials

Tarantino, Alessandro and Hyde, Adrian FL (2005) An experimental investigation of work dissipation in crushable materials. Geotechnique, 55 (8). 575 –584. ISSN 0016-8505

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Using simple direct shear tests on a carbonate sand, an experimental validation has been provided for the Taylor work dissipation equation, modified to include a term for particle breakage. The shear tests have been carried out on monogranular and fractal grain size distributions of a crushable carbonate sand at vertical stresses ranging from 200 kPa to 1400 kPa and horizontal displacements from 0·5 mm to 8 mm. In order to compare particle breakage of specimens with different particle sizes, specimens were prepared with a sample height of about 20d 50. Grain size distributions were measured before and after shearing. A link has been established between grain crushing, shear strength and general mechanical behaviour of sands. In particular, an explanation has been given for the phenomenon of the curvature of the Mohr–Coulomb envelope observed at apparent ultimate conditions in sands using measurable physical variables related to particle crushing. The apparent critical state friction angle has been shown to contain both frictional and clastic components. Examination of these separate components of shear resistance leads to the conclusion that the apparent critical state angle of friction increases as the rate of particle crushing, normalised with respect to the normal force, increases. It was also observed that the normalised rate of crushing levelled off as a stable fractal dimension for the grain size distribution was achieved.