Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Development of a novel wear detection system for wind turbine gearboxes

Hamilton, Andrew Wallace and Cleary, Alison and Quail, Francis (2014) Development of a novel wear detection system for wind turbine gearboxes. IEEE Sensors Journal, 14 (2). 465 - 473. ISSN 1530-437X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents a low-cost, inline, gearbox lubrication monitoring sensor. The purpose of the research was to develop a sensor that can analyze wear particles suspended in gearbox lubricant systems. Current inline sensor systems rely on methods that prevent significant morphological classification. The size and shape of the particles are often indicative of the type of wear that is occurring and is therefore significant in assessing the gearbox state. A demonstration sensor consisting of a webcam that uses an active pixel sensor combined with a rectangular cross section optically transparent acrylic pipe was developed. A rig that simulates a gearbox lubrication system was used to test the sensor. Images of wear particles suspended in the lubricant were captured in real time. Image analysis was then performed to distinguish particles from the lubricant medium. Object characteristics, such as area and major axis length, were used to determine shape parameters. It was found that the sensor could detect particles down to a major axis length of 125 μm. Classification was also demonstrated for four basic shapes: square, circular, rectangular and ellipsoidal. ellipsoidal, was also demonstrated.