Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

The abundant dietary constituent ferulic acid forms a wide range of metabolites including a glutathione adduct when incubated with rat hepatocytes

Omar, Khaled and Grant, M. Helen and Henderson, Catherine and Watson, David G (2014) The abundant dietary constituent ferulic acid forms a wide range of metabolites including a glutathione adduct when incubated with rat hepatocytes. Xenobiotica, 44 (5). pp. 432-437.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

1. The metabolism of ferulic acid (FA) has been studied in a number of different systems and several metabolites of FA have been characterised. No previous work has been carried out using hepatocytes to characterise the metabolism of FA. 2. A metabolomics approach in combination with high resolution mass spectrometry was used to characterise the metabolites of FA formed in isolated rat hepatocytes. FA was incubated with rat hepatocytes and the metabolites formed were profiled at 30 and 120 minutes. The metabolites were characterised according to their accurate mass at <2 ppm using Fourier transform mass spectrometry (FT-MS). 3. Sixteen metabolites of FA were identified. The most abundant metabolite was the sulphate of FA and this was followed by FA glucuronide and glycine conjugates. A wide range of low level metabolites were produced in the hepatocyte incubations. Novel metabolites resulted from side chain oxidation. 4. In addition, a glutathione (GSH) adduct of FA was formed. Incubation of a solution of FA with GSH also resulted in formation of this adduct indicating that it could be formed purely by a chemical reaction. Thus the metabolism of FA in rat hepatocytes is more complex than previously described.