Systematic study of effect of cross-drafts and nozzle diameter on shield gas coverage
Beyer, V. and Campbell, Stuart and Ramsey, Gemma and Galloway, Alexander and Moore, A.J. and McPherson, Norman (2013) Systematic study of effect of cross-drafts and nozzle diameter on shield gas coverage. Science and Technology of Welding and Joining, 18 (8). pp. 652-660. ISSN 1362-1718 (https://doi.org/10.1179/1362171813Y.0000000143)
PDF.
Filename: Campbell_SW_Galloway_AM_et_al_Pure_Systematic_study_of_effect_of_cross_drafts_and_nozzle_diameter_on_shield_gas_coverage_in_MIG_welding_Sep_2013.pdf
Preprint Download (1MB) |
Abstract
A shield gas flow rate of 15–20 L min21 is typically specified in metal inert gas welding, but is often adjusted to as high as 36 L min21 by welders in practice. Not only is this overuse of shield gas wasteful, but uncontrolled high gas flows can lead to significant turbulence induced porosity in the final weld. There is therefore a need to understand and control the minimum shield gas flow rate used in practical welding where cross-drafts may affect the coverage. Very low gas coverage or no shielding leads to porosity and spatter development in the weld region. A systematic study is reported of the weld quality achieved for a range of shield gas flow rates, cross-draft speeds and nozzle diameters using optical visualisation and numerical modelling to determine the shield gas coverage. As a consequence of the study, the shield gas flow has been reduced to 12 L min21 in production welding, representing a significant process cost saving and reduced environmental impact with no compromise to the final weld quality.
ORCID iDs
Beyer, V., Campbell, Stuart, Ramsey, Gemma, Galloway, Alexander ORCID: https://orcid.org/0000-0003-0143-8314, Moore, A.J. and McPherson, Norman ORCID: https://orcid.org/0000-0003-4008-8724;-
-
Item type: Article ID code: 44912 Dates: DateEventNovember 2013PublishedSubjects: Technology > Mechanical engineering and machinery
Technology > Mining engineering. MetallurgyDepartment: Faculty of Engineering > Mechanical and Aerospace Engineering Depositing user: Pure Administrator Date deposited: 18 Sep 2013 13:50 Last modified: 05 Jan 2025 21:00 URI: https://strathprints.strath.ac.uk/id/eprint/44912