Facet recovery and light emission from GaN/InGaN/GaN core-shell structures grown by metal organic vapour phase epitaxy on etched GaN nanorod arrays
Le Boulbar, E D and Gîrgel, I and Lewins, C and Edwards, P R and Martin, R W and Satka, A and Allsopp, D W E and Shields, P A (2013) Facet recovery and light emission from GaN/InGaN/GaN core-shell structures grown by metal organic vapour phase epitaxy on etched GaN nanorod arrays. Journal of Applied Physics, 114. 094302.
![]() |
PDF
LeBoulbar2013JAP114.pdf Final Published Version Download (5MB) |
Abstract
The use of etched nanorods from a planar template as a growth scaffold for a highly regular GaN/InGaN/GaN core-shell structure is demonstrated. The recovery of m-plane non-polar facets from etched high-aspect-ratio GaN nanorods is studied with and without the introduction of a hydrogen silsesquioxane passivation layer at the bottom of the etched nanorod arrays. This layer successfully prevented c-plane growth between the nanorods, resulting in vertical nanorod sidewalls (∼89.8°) and a more regular height distribution than re-growth on unpassivated nanorods. The height variation on passivated nanorods is solely determined by the uniformity of nanorod diameter, which degrades with increased growth duration. Facet-dependent indium incorporation of GaN/InGaN/GaN core-shell layers regrown onto the etched nanorods is observed by high-resolution cathodoluminescence imaging. Sharp features corresponding to diffracted wave-guide modes in angle-resolved photoluminescence measurements are evidence of the uniformity of the full core-shell structure grown on ordered etched nanorods.
Creators(s): |
Le Boulbar, E D, Gîrgel, I, Lewins, C, Edwards, P R ![]() ![]() | Item type: | Article |
---|---|
ID code: | 44721 |
Keywords: | facet recovery, light emission, GaN/InGaN/GaN , core-shell structures, metal organic vapour phase epitaxy, GaN nanorod arrays, Physics, Physics and Astronomy(all) |
Subjects: | Science > Physics |
Department: | Faculty of Science > Physics Technology and Innovation Centre > Bionanotechnology Technology and Innovation Centre > Photonics |
Depositing user: | Pure Administrator |
Date deposited: | 04 Sep 2013 13:48 |
Last modified: | 20 Jan 2021 20:49 |
Related URLs: | |
URI: | https://strathprints.strath.ac.uk/id/eprint/44721 |
Export data: |