Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Evaluating the robustness of an active network management function in an operational environment

Venturi, Alberto and Dolan, Michael James and Clarkson, Paul and Wright, Paul and Forbes, Alistair and Yang, Xin-She and Roscoe, Andrew and Ault, Graham and Burt, Graeme (2013) Evaluating the robustness of an active network management function in an operational environment. In: EU EURAMET EMRP Metrology for Smart Grids Workshop, 25-26 June 2013, 2013-07-25 - 2013-07-26.

[img] PDF
Accepted Author Manuscript

Download (1MB)


Incentives to renewable sources of energy are causing an increase of the number of generators connected to distribution networks. The cost of the network reinforcement are very high and utilities are interested in active network management solutions in order to manage the generator connection to the net, reducing to the minimum the network reinforcement. So, automatic control systems, based on software tools, are becoming more desirable in distribution power systems. Primarily, such schemes are expected to manage system voltage fluctuations, network power flows and fault levels. Functionalities include also power balancing, system frequency control and management of demand side resources for the primary system constraints. A critical concern is the robustness of online and automatic active network management (ANM) algorithms/schemes. The ANM scheme’s functionality depends on convergence to a solution when faced with uncertainty and its reliability can be reduced by data skew and errors. The work presented evaluates power flow management (PFM) functionality based on the Constraint Satisfaction Problem (CSP) in an operational environment. The objective is to assess performances when subjected to different levels of data uncertainty and verify the introduction of a state estimator (SE) in the ANM architecture to mitigate the data uncertainty effects on the control action.