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Introduction 

Incentives to renewable sources of energy are causing an increase of the number 

of generators connected to distribution networks.  

 

The cost of the network reinforcement are very high and utilities are interested in 

active network management solutions in order to manage the generator 

connection to the net, reducing to the minimum the network reinforcement. 

 

So, automatic control systems, based on software tools, are becoming more 

desirable in distribution power systems. 

 

Primarily, such schemes are expected to manage system voltage fluctuations, 

network power flows and fault levels.  

 

Functionalities include also power balancing, system frequency control and 

management of demand side resources for the primary system constraints.  

 

 

 



Introduction 

A critical concern is the robustness of online and automatic active network 

management (ANM) algorithms/schemes. 

 

The ANM scheme’s functionality depends on convergence to a solution when 

faced with uncertainty and its reliability can be reduced by data skew and 

errors.  

 

The work presented evaluates power flow management (PFM) functionality based 

on the Constraint Satisfaction Problem (CSP) in an operational environment.  

 

The objective is to assess performances when subjected to different levels of data 

uncertainty and verify the introduction of a state estimator (SE) in the ANM 

architecture to mitigate the data uncertainty effects on the control action. 
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Test Environment 

The effect of the addition of extra impedances has 

been evaluated and new impedances have been 

added to the branches of the grid.  
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Test Environment 

Part of the microgrid available at 

Strathclyde University has been 

configured to allow the integration and 

testing process of an ANM function.  

Busbar 1 includes a variable load bank. 

Load banks are also connected to two 

other busbars (4 and 5). Induction 

machines, which can also act as 

generators, are connected to buses 4, 5, 

6 and 7. These units have a maximum 

real power output of 2.2kW, 5.5kW, 

7.5kW and 7.5 kW. 



PFM using a CSP approach  

Modelling the PFM problem as a constraint satisfaction problem entails expressing 

the problem as a set of variables with finite discrete domains and a set of 

constraints. 

 

For PFM, the problem to be solved is concerned with deciding what control actions 

to take, on the Distributed Generation (DG) units, in order to maintain the 

network within the thermal limits (i.e. power constraints) and maximize DG 

access.  

 

The variables of the CSP are the controllable generating plant power output set-

points and the domains are the discrete values that the generators’ set-points 

can assume.  

V:={gen1, gen2,…,genn} 

Dgen1:={control1, …, controln} 

 

  

 



PFM using a CSP approach  

These values are the maximum values that a generator can output. However, the 

intermittent nature of most renewable generating plants means that DG output 

is such that its output is continuous up to this discrete set-point value. 

 

In addition to variables and their domains we have to set the constraints on the 

solution: 

 

• Power flow constraints: no thermal overloads 

 

• Contractual constraints: generators access rights   

 

• Preference constraints. 

 

 

  
 



PFM using a CSP approach  

(Vgens, DControl Signal, C)          (1) 

Where: 

Vgens = {Gen1, Gen2.... Genn}       (2) 

DControl Signal is: 

DGen1={1,…,0}, DGen2 ={1,…,0}, DGenn ={v1,…,vn} 

   (3) 

 

C is the constraint applied to the sets of variables:  

CPower Flow = { max| |ij ijS S }                

  (4) 

CContractual = {k, l, m}     (5) 

 max
1MaxDG

Gi

N PC n
  

                  (6) 

 



PFM using a CSP approach  

Modelling PFM, in this way, relies upon a load flow engine to evaluate the power 

flows within the network to determine any control actions that are required. 

 

The generators have been ordered in a last-in, first off (LIFO) manner to replicate 

the current connection regime used in the UK.   
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The PFM algorithm, presented above, was chosen 

as the ANM control approach and installed initially on 

a COM600 (Windows XP embedded industrial PC). 

Integration of the ANM and the Microgrid 



The PFM algorithm, presented above, was chosen 

as the ANM control approach and installed initially on 

a COM600 (Windows XP embedded industrial PC). 

 

The communication system among the PCs of the 

Microgrid created some problems and different 

solutions has been tested. The solution chosen at the 

end is based on the OPC server/client architecture, 

with the integration of the OpenOPC functionalities. 

 

 

 

 

 

Integration of the ANM and the Microgrid 



The PFM algorithm, presented above, was chosen 

as the ANM control approach and installed initially on 

a COM600 (Windows XP embedded industrial PC). 

 

The communication system among the PCs of the 

Microgrid created some problems and different 

solutions has been tested. The solution chosen at the 

end is based on the OPC server/client architecture, 

with the integration of the OpenOPC functionalities. 

 

In order to send the data to the RTS analogue inputs, 

a Beckhoff CX5010 Embedded PC with Intel® 

Atom™ processor has been used. The Beckhoff 

software presents OPC functionalities and the data 

can be sent using the OPC standard. The Beckhoff 

unit can be set and controlled also via a standard pc.  

 

 

 

 

 

Integration of the ANM and the Microgrid 



The sensor measurements coming from the 

microgrid are collected via a real time station (RTS) 

computer developed by ADI. The RTS has analogue 

and digital input/output (I/O) interfaces, can execute 

programs written with Matlab and Simulink, process 

directly the data collected, manage the electrical 

machines of the grid and guarantee their safe 

operation.  
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made available, mapped on the OPC server 

variables and sent from the PC, connected to the 

RTS, to the OPC server.  
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The sensor measurements coming from the 

microgrid are collected via a real time station (RTS) 

computer developed by ADI. The RTS has analogue 

and digital input/output (I/O) interfaces, can execute 

programs written with Matlab and Simulink, process 

directly the data collected, manage the electrical 

machines of the grid and guarantee their safe 

operation.  

 

After a first elaboration, the measurements are then 

made available, mapped on the OPC server 

variables and sent from the PC, connected to the 

RTS, to the OPC server.  

 

The control software reads them, through the OPC 

server, and sends the control signals back through 

the RTS.  

 

Integration of the ANM and the Microgrid 



Experimental work and results 

The sensors installed on the microgrid and the data acquisition system guarantee 

a precision of 2.14% in the measurement of voltage and current magnitude, 

and consequently a precision of 4.5% in measuring the power flow. This level of 

precision is considered in literature enough to simulate the real operating 

conditions of an energy management system on a low voltage network. 

 

In order to show the effect of the uncertainty of the data on the performance of the 

ANM software a series of tests were executed on the microgrid.   

 

The induction machines located at buses 4, 5, 6 and 7 were set to compensate the 

load requested on the buses 4 and 5. Thermal constraints were set in the 

branches 1 and 3 by reducing the limits within the PFM software and microgrid 

network model.  

 



Experimental work and results 

The generator access priorities were assigned to  

represent a LIFO connection arrangement.  

Gen 1 was set to 1 

Gen 3 was set to 2  

Gen 2 was set to 3  

Gen 4 was set to 4  

(i.e. this unit would be the  

first to be curtailed if a thermal breach was 

 detected).  

 

Then, progressively, the loads were reduced to zero starting with the load on 

busbar 5.  

This caused a rising power flow through the branches 1 and 3, and a consequent 

thermal constraint violation. 

 



Experimental work and results 

The response of the ANM function, for this scenario, was evaluated against the 

following data sets:  

 

• An initial clean set of input data without any uncertainty  

• A set of data as collected from the grid (with an uncertainty of 4.5%) 

• A set of data in which the uncertainty of the loads and the machines power flow 

was artificially increased to 6% 

• A set of data as calculated by a state estimator that reduces the uncertainty to 

2% 



Experimental work and results 

The different control signals sent by the 

ANM to curtail the power output of the 

generator on busbar 7, Gen 4, in 

presence of different levels of 

uncertainty  

The differences between the 

control signals (relative to the 

base case with no uncertainty) 

sent in presence of uncertainty  



Experimental work and results 

 

The analysis found that no divergence of the load flow engine was encountered 

when erroneous measurements, up to 6.5%, were presented to the ANM 

software.  

However, with data uncertainty it can be seen that the error, in some situations, is 

large enough to either move the curtailment to a deeper set point (next domain 

value for the variable) or not curtail sufficient levels of DG.  

The studies have also highlighted the importance of the reduction in uncertainty, 

for example through the use of a SE.  

The uncertainty of the input data is reflected in the uncertainty of the final power 

flow calculation, so the operators taking in account of the uncertainty reduction 

introduced by a SE can adopt less conservative thermal detection limit to 

compensate for expected errors.  

         

         


