Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Integrated compact optical vortex beam emitters

Cai, Xinlun and Wang, Jianwei and Strain, Michael J and Johnson-Morris, Benjamin and Zhu, Jiangbo and Sorel, Marc and O'Brien, Jeremy L and Thompson, Mark G and Yu, Siyuan (2012) Integrated compact optical vortex beam emitters. Science, 338 (6105). pp. 363-366. ISSN 0036-8075

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Emerging applications based on optical beams carrying orbital angular momentum (OAM) will probably require photonic integrated devices and circuits for miniaturization, improved performance, and enhanced functionality. We demonstrate silicon-integrated optical vortex emitters, using angular gratings to extract light confined in whispering gallery modes with high OAM into free-space beams with well-controlled amounts of OAM. The smallest device has a radius of 3.9 micrometers. Experimental characterization confirms the theoretical prediction that the emitted beams carry exactly defined and adjustable OAM. Fabrication of integrated arrays and demonstration of simultaneous emission of multiple identical optical vortices provide the potential for large-scale integration of optical vortex emitters on complementary metal-oxide–semiconductor compatible silicon chips for wide-ranging applications.