Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Assessment of the ellipsoidal-statistical Bhatnagar-Gross-Krook model for force-driven Poiseuille flows

Meng, Jian-Ping and Wu, Lei and Reese, Jason and Zhang, Yonghao (2013) Assessment of the ellipsoidal-statistical Bhatnagar-Gross-Krook model for force-driven Poiseuille flows. Journal of Computational Physics, 251. pp. 385-395. ISSN 0021-9991

[img] PDF
Meng_JP_et_al_Assessment_of_ellipsoidal_statistical_Bhatnagar_Gross_Krook_model_for_force_driven_Poiseuille_flows_Aug_2013.pdf
Final Published Version

Download (1MB)

Abstract

We investigate the accuracy of the ellipsoidal-statistical Bhatnagar–Gross–Krook (ES-BGK) kinetic model for planar force-driven Poiseuille flows. Our numerical simulations are conducted using the deterministic discrete velocity method, for Knudsen numbers (Kn) ranging from 0.05 to 10. While we provide numerically accurate data, our aim is to assess the accuracy of the ES-BGK model for these flows. By comparing with data from the direct simulation Monte Carlo (DSMC) method and the Boltzmann equation, the ES-BGK model is found to be able to predict accurate velocity and temperature profiles in the slip flow regime (0:01 < Kn 6 0:1), for both low-speed and high-speed flows. In the transition flow regime (0:1 < Kn 6 10), however, the model does not quantitatively capture the viscous heating effect.