Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Optical response of porous titania-silica waveguides to surface charging in electrolyte filled pores

Sefcik, J and Kroslak, M and Morbidelli, M (2002) Optical response of porous titania-silica waveguides to surface charging in electrolyte filled pores. Helvetica Chimica Acta, 85 (10). pp. 3508-3515. ISSN 0018-019X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this work, we present a novel method forin situ investigation of surface charging and ion transport inside nanopores of titania-silica waveguide by means of the optical-waveguide-lightmode spectroscopy. Porous oxide waveguides show a strong optical response when exposed to electrolyte solutions, and this response is consistent with oxide surface charging due to changes in ionic strength and pH of the solution in contact with the waveguide. The optical response to pH or electrolyte concentration change is stabilized within several minutes when the solution ionic strength is sufficiently high (0.1M),while it takes two orders of magnitude longer-to-reach stable optical response at very low ionic strengths (<0.1mM). The relaxation times at the high ionic strength are still by several orders of magnitude slower than expected from bulk diffusion coefficients of electrolytes in water. Our results indicate that diffusion of electrolytes is severely hindered (and more so with decreasing ionic strength) in charged pores inside waveguides.