Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Vines - A new graphical model for dependent random variables

Bedford, T.J. and Cooke, R. (2002) Vines - A new graphical model for dependent random variables. Annals of Statistics, 30 (4). pp. 1031-1068. ISSN 0090-5364

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A new graphical model, called a vine, for dependent random variables is introduced. Vines generalize the Markov trees often used in modelling high-dimensional distributions. They differ from Markov trees and Bayesian belief nets in that the concept of conditional independence is weakened to allow for various forms of conditional dependence. Vines can be used to specify multivariate distributions in a straightforward way by specifying various marginal distributions and the ways in which these marginals are to be coupled. Such distributions have applications in uncertainty analysis where the objective is to determine the sensitivity of a model output with respect to the uncertainty in unknown parameters. Expert information is frequently elicited to determine some quantitative characteristics of the distribution such as (rank) correlations. We show that it is simple to construct a minimum information vine distribution, given such expert information. Sampling from minimum information distributions with given marginals and (conditional) rank correlations specified on a vine can be performed almost as fast as independent sampling. A special case of the vine construction generalizes work of Joe and allows the construction of a multivariate normal distribution by specifying a set of partial correlations on which there are no restrictions except the obvious one that a correlation lies between $-1$ and 1.