Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Distribution power flow management utilising an online constraint programming method

Dolan, Michael James and Davidson, Euan and Ault, Graham and Bell, Keith and McArthur, Stephen (2013) Distribution power flow management utilising an online constraint programming method. IEEE Transactions on Smart Grid, 4 (2). 798 - 805. ISSN 1949-3053

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents a novel active power flow management (PFM) method for managing multiple distributed generator (DG) units connected to medium voltage distribution networks. The method uses the artificial intelligence technique of constraint programming to autonomously manage DG real power outputs and offers flexible and network agnostic characteristics. The method is assessed using multiple scenarios on two real case study networks to examine simulated closed-loop control actions under certain thermal excursions. The test cases are explored with algorithms implemented, in software, on commercially available substation computing hardware to identify computation timescales and investigate algorithm robustness when presented with measurement error. The archival value of this paper is in the specification and evaluation of a novel application of the constraint programming technique for online control of DG in thermally constrained distribution networks.