Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Computing mean first exit times for stochastic processes using multi-level Monte Carlo

Higham, Desmond and Roj, Mikolaj (2012) Computing mean first exit times for stochastic processes using multi-level Monte Carlo. In: Proceedings of the 2012 Winter Simulation Conference. IEEE.

[img] PDF

Download (243kB)


    The multi-level approach developed by Giles (2008) can be used to estimate mean first exit times for stochastic differential equations, which are of interest in finance, physics and chemical kinetics. Multi-level improves the computational expense of standard Monte Carlo in this setting by an order of magnitude. More precisely, for a target accuracy of TOL, so that the root mean square error of the estimator is O(TOL), the O(TOL-4) cost of standard Monte Carlo can be reduced to O(TOL-3|log(TOL)|1/2) with a multi-level scheme. This result was established in Higham, Mao, Roj, Song, and Yin (2013), and illustrated on some scalar examples. Here, we briefly overview the algorithm and present some new computational results in higher dimensions.