On the application of Weibull analysis to experimentally determined single fibre strength distributions
Thomason, James (2013) On the application of Weibull analysis to experimentally determined single fibre strength distributions. Composites Science and Technology, 77. pp. 74-80. ISSN 0266-3538 (https://doi.org/10.1016/j.compscitech.2013.01.009)
Microsoft Word.
Filename: Thomason_JL_Pure_On_the_application_of_Weibull_Analysis_to_experimentaly_determined_single_fibre_atrength_distributions_Jan_2013.docx
Preprint Download (1MB) |
Abstract
The application of Weibull theory to the analysis of experimental data obtained from the tensile testing of reinforcement fibres is widespread in composites research and development. One basic assumption implicit in the use of Weibull analysis is that all values of fibre strength described by any set of unimodal or multimodal Weibull parameters are accessible experimentally. However, this is not the case, as a minimum level of fibre strength is necessary in order to be able to isolate, prepare and test any fibre. In this paper the consequences of this experimental limitation are explored in terms of the commonly applied Weibull graphical analysis method. It is demonstrated that this can result in significant curvature in a standard Weibull plot at the low strength end of the data. Furthermore, at low sampling numbers this effect can be misinterpreted as evidence of multiple defect populations. The phenomenon significantly affects the values of the Weibull parameters obtained from the graphical analysis and also from the average strength versus gauge length analysis. The presence of this lower limit presents a serious challenge to those wishing to support conclusions on the physics and mechanics of fibre fracture from Weibull analysis of single fibre tensile data.
ORCID iDs
Thomason, James ORCID: https://orcid.org/0000-0003-0868-3793;-
-
Item type: Article ID code: 42620 Dates: DateEvent22 March 2013PublishedSubjects: Technology > Mechanical engineering and machinery Department: Faculty of Engineering > Mechanical and Aerospace Engineering Depositing user: Pure Administrator Date deposited: 21 Jan 2013 08:59 Last modified: 01 Dec 2024 12:45 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/42620