Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Ranking social bookmarks using topic models

Harvey, M. and Ruthven, I. and Carman, M. (2010) Ranking social bookmarks using topic models. In: 19th ACM international conference on Information and knowledge management, 2010-10-26 - 2010-10-30.

[img]
Preview
PDF
cikm2010_p1401_harvey.pdf
Accepted Author Manuscript

Download (284kB) | Preview

Abstract

Ranking of resources in social tagging systems is a difficult problem due to the inherent sparsity of the data and the vo- cabulary problems introduced by having a completely unre- stricted lexicon. In this paper we propose to use hidden topic models as a principled way of reducing the dimensionality of this data to provide more accurate resource rankings with higher recall. We first describe Latent Dirichlet Allocation (LDA) and then show how it can be used to rank resources in a social bookmarking system. We test the LDA tagging model and compare it with 3 non-topic model baselines on a large data sample obtained from the Delicious social book- marking site. Our evaluations show that our LDA-based method significantly outperforms all of the baselines.