Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Aluminium oxide prepared by UV/ozone exposure for low-voltage organic thin-film transistors

Chinnam, Krishna Chytanya and Gupta, Swati and Gleskova, Helena (2012) Aluminium oxide prepared by UV/ozone exposure for low-voltage organic thin-film transistors. Journal of Non-Crystalline Solids, 358 (17). pp. 2512-2515. ISSN 0022-3093

[img]
Preview
PDF (Chinnam-etal-JNCS-2012-Alluminium-oxide-prepared-by-UV-ozone-exposure-for-low-voltage)
Chinnam_etal_JNCS_2012_Alluminium_oxide_prepared_by_UV_ozone_exposure_for_low_voltage.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (339kB)| Preview

    Abstract

    We have developed a gate dielectric for low-voltage organic thin-film transistors based on an inorganic/organic bi-layer with a total thickness of up to ~ 20 nm. The inorganic layer is aluminium oxide formed by UV/ozone treatment of aluminium layers. The organic layer is 1-octylphosphonic acid. The preparation of aluminium oxide was studied with respect to the threshold voltage of p-channel thin-film transistors based on thermally evaporated pentacene. The results demonstrate that the threshold voltage decreases with increasing UV/ozone exposure time. The threshold voltage varies by 0.7 V and the gate-source leakage current by a factor of 10 as a function of aluminium oxide preparation. The electrical breakdown field of the bi-layer gate dielectric is at least 5 MV/cm for all AlOx preparation conditions.