Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Aluminium oxide prepared by UV/ozone exposure for low-voltage organic thin-film transistors

Chinnam, Krishna Chytanya and Gupta, Swati and Gleskova, Helena (2012) Aluminium oxide prepared by UV/ozone exposure for low-voltage organic thin-film transistors. Journal of Non-Crystalline Solids, 358 (17). pp. 2512-2515. ISSN 0022-3093

[img]
Preview
PDF (Chinnam-etal-JNCS-2012-Alluminium-oxide-prepared-by-UV-ozone-exposure-for-low-voltage)
Chinnam_etal_JNCS_2012_Alluminium_oxide_prepared_by_UV_ozone_exposure_for_low_voltage.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (339kB) | Preview

Abstract

We have developed a gate dielectric for low-voltage organic thin-film transistors based on an inorganic/organic bi-layer with a total thickness of up to ~ 20 nm. The inorganic layer is aluminium oxide formed by UV/ozone treatment of aluminium layers. The organic layer is 1-octylphosphonic acid. The preparation of aluminium oxide was studied with respect to the threshold voltage of p-channel thin-film transistors based on thermally evaporated pentacene. The results demonstrate that the threshold voltage decreases with increasing UV/ozone exposure time. The threshold voltage varies by 0.7 V and the gate-source leakage current by a factor of 10 as a function of aluminium oxide preparation. The electrical breakdown field of the bi-layer gate dielectric is at least 5 MV/cm for all AlOx preparation conditions.