Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Design and synthesis of EGFR dimerization inhibitors and evaluation of their potential in the treatment of psoriasis

Petch, Donna and Anderson, Rosaleen J. and Cunningham, Anne and George, Suja E. and Hibbs, David E. and Liu, Ran and Mackay, Simon P. and Paul, Andrew and Small, David A. P. and Groundwater, Paul W. (2012) Design and synthesis of EGFR dimerization inhibitors and evaluation of their potential in the treatment of psoriasis. Bioorganic and Medicinal Chemistry, 20 (19). pp. 5901-5914. ISSN 0968-0896

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Hit compounds from in silico screening for inhibitors of the EGFR dimerization process were evaluated for their anti-proliferative (CCD-1106 keratinocytes) and anti-oxidant (TBA assay) activity and their effect on EGFR dimerization (BS3 chemical crosslinking assay). 7-Benzyl-8-{N'-[1-( 3-ethoxy-4-hydroxyphenyl)meth-(Z)-ylidene]hydrazino}-1,3-dimethylxanthine 2a (127 mu M) leads to 37% inhibition of p-EGFR dimerization in the CCD-1106 cell line and also inhibits phosphorylation of proteins in the MAPK/ERK pathway, ERK 1/2 and p-38. Based on this initial data, 2a was selected for further study and was evaluated for its anti-proliferative activity in a range of keratinocyte (CCD-1106, HaCaT and NHEK) and monocyte (ThP1 and U937) cell lines. Xanthine 2a is pro-apoptotic in HaCaT keratinocytes, as shown by electron microscopy, caspase 3/7, and annexin V-FITC/PI flow cytometric assays. It is significantly less cytotoxic than the established antipsoriatic agent dithranol 14, as determined by MTT and LDH release assays, and thus has potential as a lead compound for the treatment of psoriasis.