An assembly oriented design framework for product structure engineering and assembly sequence planning

Demoly, F. and Yan, Xiu and Eynard, B. and Rivest, L. and Gomes, S. (2011) An assembly oriented design framework for product structure engineering and assembly sequence planning. Robotics and Computer Integrated Manufacturing, 27 (1). pp. 33-46. ISSN 0736-5845 (https://doi.org/10.1016/j.rcim.2010.05.010)

[thumbnail of RCIM_D_09_00078.fdf] Other. Filename: RCIM_D_09_00078.fdf
Preprint

Download (1MB)

Abstract

The paper describes a novel framework for an assembly-oriented design (AOD) approach as a new functional product lifecycle management (PLM) strategy, by considering product design and assembly sequence planning phases concurrently. Integration issues of product life cycle into the product development process have received much attention over the last two decades, especially at the detailed design stage. The main objective of the research is to define assembly sequence into preliminary design stages by introducing and applying assembly process knowledge in order to provide an assembly context knowledge to support life-oriented product development process, particularly for product structuring. The proposed framework highlights a novel algorithm based on a mathematical model integrating boundary conditions related to DFA rules, engineering decisions for assembly sequence and the product structure definition. This framework has been implemented in a new system called PEGASUS considered as an AOD module for a PLM system. A case study of applying the framework to a catalytic-converter and diesel particulate filter sub-system, belonging to an exhaust system from an industrial automotive supplier, is introduced to illustrate the efficiency of the proposed AOD methodology.