In vitro model of metastasis to bone marrow mediates prostate cancer castration resistant growth through paracrine and extracellular matrix factors
Lescarbeau, Reynald M and Seib, F Philipp and Prewitz, Marina and Werner, Carsten and Kaplan, David L (2012) In vitro model of metastasis to bone marrow mediates prostate cancer castration resistant growth through paracrine and extracellular matrix factors. PLOS One, 7 (8). e40372. (https://doi.org/10.1371/journal.pone.0040372)
Full text not available in this repository.Request a copyAbstract
The spread of prostate cancer cells to the bone marrow microenvironment and castration resistant growth are key steps in disease progression and significant sources of morbidity. However, the biological significance of mesenchymal stem cells (MSCs) and bone marrow derived extracellular matrix (BM-ECM) in this process is not fully understood. We therefore established an in vitro engineered bone marrow tissue model that incorporates hMSCs and BM-ECM to facilitate mechanistic studies of prostate cancer cell survival in androgen-depleted media in response to paracrine factors and BM-ECM. hMSC-derived paracrine factors increased LNCaP cell survival, which was in part attributed to IGFR and IL6 signaling. In addition, BM-ECM increased LNCaP and MDA-PCa-2b cell survival in androgen-depleted conditions, and induced chemoresistance and morphological changes in LNCaPs. To determine the effect of BM-ECM on cell signaling, the phosphorylation status of 46 kinases was examined. Increases in the phosphorylation of MAPK pathway-related proteins as well as sustained Akt phosphorylation were observed in BM-ECM cultures when compared to cultures grown on plasma-treated polystyrene. Blocking MEK1/2 or the PI3K pathway led to a significant reduction in LNCaP survival when cultured on BM-ECM in androgen-depleted conditions. The clinical relevance of these observations was determined by analyzing Erk phosphorylation in human bone metastatic prostate cancer versus non-metastatic prostate cancer, and increased phosphorylation was seen in the metastatic samples. Here we describe an engineered bone marrow model that mimics many features observed in patients and provides a platform for mechanistic in vitro studies.
ORCID iDs
Lescarbeau, Reynald M, Seib, F Philipp ORCID: https://orcid.org/0000-0002-1955-1975, Prewitz, Marina, Werner, Carsten and Kaplan, David L;-
-
Item type: Article ID code: 42102 Dates: DateEvent1 August 2012PublishedSubjects: Medicine > Pharmacy and materia medica Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Technology and Innovation Centre > BionanotechnologyDepositing user: Pure Administrator Date deposited: 16 Nov 2012 11:48 Last modified: 11 Nov 2024 10:17 URI: https://strathprints.strath.ac.uk/id/eprint/42102