Picture of smart phone

Open Access research that is better understanding human-computer interaction...

Strathprints makes available scholarly Open Access content by researchers in the Department of Computer & Information Sciences, including those researching information retrieval, information behaviour, user behaviour and ubiquitous computing.

The Department of Computer & Information Sciences hosts The Mobiquitous Lab, which investigates user behaviour on mobile devices and emerging ubiquitous computing paradigms. The Strathclyde iSchool Research Group specialises in understanding how people search for information and explores interactive search tools that support their information seeking and retrieval tasks, this also includes research into information behaviour and engagement.

Explore the Open Access research of The Mobiquitous Lab and the iSchool, or theDepartment of Computer & Information Sciences more generally. Or explore all of Strathclyde's Open Access research...

Functional immobilization of signaling proteins enables control of stem cell fate

Alberti, Kristin and Davey, Ryan E and Onishi, Kento and George, Sophia and Salchert, Katrin and Seib, F Philipp and Bornhäuser, Martin and Pompe, Tilo and Nagy, Andras and Werner, Carsten and Zandstra, Peter W (2008) Functional immobilization of signaling proteins enables control of stem cell fate. Nature Methods, 5 (7). pp. 645-650.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The mode of ligand presentation has a fundamental role in organizing cell fate throughout development. We report a rapid and simple approach for immobilizing signaling ligands to maleic anhydride copolymer thin-film coatings, enabling stable signaling ligand presentation at interfaces at defined concentrations. We demonstrate the utility of this platform technology using leukemia inhibitory factor (LIF) and stem cell factor (SCF). Immobilized LIF supported mouse embryonic stem cell (mESC) pluripotency for at least 2 weeks in the absence of added diffusible LIF. Immobilized LIF activated signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling in a dose-dependent manner. The introduced method allows for the robust investigation of cell fate responses from interface-immobilized ligands.