Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Miniature mobile sensor platforms for condition monitoring of structures

Friedrich, M. and Dobie, G.I.I. and Chan, C.C. and Pierce, S.G. and Galbraith, W. and Marshall, S. and Hayward, G. (2009) Miniature mobile sensor platforms for condition monitoring of structures. IEEE Sensors Journal, 9 (11). pp. 1439-1448. ISSN 1530-437X

[img] PDF (Full text)
IEEE_Sensors_paper_FINAL2.pdf
Preprint

Download (839kB)

Abstract

In this paper, a wireless, multisensor inspection system for nondestructive evaluation (NDE) of materials is described. The sensor configuration enables two inspection modes-magnetic (flux leakage and eddy current) and noncontact ultrasound. Each is designed to function in a complementary manner, maximizing the potential for detection of both surface and internal defects. Particular emphasis is placed on the generic architecture of a novel, intelligent sensor platform, and its positioning on the structure under test. The sensor units are capable of wireless communication with a remote host computer, which controls manipulation and data interpretation. Results are presented in the form of automatic scans with different NDE sensors in a series of experiments on thin plate structures. To highlight the advantage of utilizing multiple inspection modalities, data fusion approaches are employed to combine data collected by complementary sensor systems. Fusion of data is shown to demonstrate the potential for improved inspection reliability.