Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Breakdown processes in gas micro-bubbles in liquids under electric stress

Atrazhev, Vladimir and Vorob'ev, V.S. and Timoshkin, Igor and MacGregor, Scott and Given, M and Wilson, Mark and Wang, Tao (2012) Breakdown processes in gas micro-bubbles in liquids under electric stress. IEEE Transactions on Dielectrics and Electrical Insulation, 19 (5). pp. 1552-1558. ISSN 1070-9878

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The present work is concerned with a theoretical analysis of the breakdown characteristics of gas-filled micro-bubbles formed in insulating liquids stressed with electric field. It is assumed that the gas inside these bubbles is air which allows the use of experimental Paschen curve data for air in this analysis. Two main discharge mechanisms have been considered, the Townsend discharge and impulse breakdown. The combination of bubble diameter, D, gas pressure, p, and duration, τ, of the field stress determines the type of breakdown. Parameters which are required for the Townsend mechanism of breakdown and impulse breakdown to occur inside gas bubbles have been obtained and these conditions have been represented as boundary lines in the (Dp, τp) coordinate system. It is shown that there are such combinations of these parameters which satisfy neither Townsend nor impulse breakdown conditions. Experimental data on breakdown in air for these intermediate values of (Dp, tp) between the Townsend and the impulse discharges are not available in the literature and the breakdown behavior under such conditions is not well defined.