Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Thin-film oxygen sensors using a luminescent polynuclear gold(I) complex

Mills, A. and Tommons, C. and Bailey, R. T. and Crilly, P. and Tedford, M. C. (2011) Thin-film oxygen sensors using a luminescent polynuclear gold(I) complex. Analytica Chimica Acta, 702 (2). pp. 269-273. ISSN 0003-2670

Full text not available in this repository. Request a copy from the Strathclyde author


Robust thin-film oxygen sensors were fabricated by encapsulating a lipophilic, polynuclear gold(I) complex, bis{m-(bis(diphenylphosphino)octadecylamine-P,P′)}dichlorodigold(I), in oxygen permeable polystyrene and ormosil matrices. Strong phosphorescence, which was quenched by gaseous and dissolved oxygen, was observed from both matrices. The polystyrene encapsulated dye exhibited downward-turning Stern–Volmer plots which were well fitted by a two-site model. The ormosil trapped complex showed linear Stern–Volmer plots for dissolved oxygen quenching but was downward turning for gaseous oxygen. No leaching was observed when the ormosil based sensors were immersed in flowing water over an 8 h period. Both films exhibited fully reversible response and recovery to changing oxygen concentration with rapid response times.