Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Structural health monitoring for wind turbine foundations

Currie, Magnus and Saafi, Mohamed and Tachtatzis, Christos and Quail, Francis (2013) Structural health monitoring for wind turbine foundations. Proceedings of the ICE - Energy, 166 (4). pp. 162-169. ISSN 1751-4223

[img] PDF (Structural health monitoring for wind turbine foundations)
Currie_et_al_2013.pdf
Final Published Version

Download (795kB)

Abstract

The construction of onshore wind turbines has rapidly been increasing as the UK attempts to meet its renewable energy targets. As the UK’s future energy depends more on wind farms, safety and security are critical to the success of this renewable energy source. Structural integrity of the tower and its components is a critical element of this security of supply. With the stochastic nature of the load regime a bespoke low cost structural health monitoring system is required to monitor integrity of the concrete foundation supporting the tower. This paper presents an assessment of ‘embedded can’ style foundation failure modes in large onshore wind turbines and proposes a novel condition based monitoring solution to aid in early warning of failure. The most common failure modes are discussed and a low-cost remote monitoring system is presented.