Flow of low viscosity Boger fluids through a microfluidic hyperbolic contraction
Campo-Deaño, Laura and Galindo-Rosales, Francisco J and Pinho, F.T. and Alves, M.A. and Oliveira, Monica (2011) Flow of low viscosity Boger fluids through a microfluidic hyperbolic contraction. Journal of Non-Newtonian Fluid Mechanics, 166 (21-22). pp. 1286-1296. ISSN 0377-0257 (https://doi.org/10.1016/j.jnnfm.2011.08.006)
Preview |
PDF.
Filename: Oliveira_M_Flow_of_low_viscosity_Boger_fluids_through_a_microfluidic_hyperbolic_contraction_Nov_2011.pdf
Final Published Version Download (2MB)| Preview |
Abstract
In this work we focus on the development of low viscosity Boger fluids and assess their elasticity analyzing the flow through a microfluidic hyperbolic contraction. Rheological tests in shear and extensional flows were carried out in order to evaluate the effect of the addition of a salt (NaCl) to dilute aqueous solutions of polyacrylamide at 400, 250, 125 and 50 ppm (w/w). The rheological data showed that when 1% (w/w) of NaCl was added, a significant decrease of the shear viscosity curve was observed, and a nearly constant shear viscosity was found for a wide range of shear rates, indicating Boger fluid behavior. The relaxation times, measured using a capillary break-up extensional rheometer (CaBER), decreased for lower polymer concentrations, and with the addition of NaCl. Visualizations of these Boger fluids flowing through a planar microfluidic geometry containing a hyperbolic contraction, which promotes a nearly uniform extension rate at the centerline of the geometry, was important to corroborate their degree of elasticity. Additionally, the quantification of the vortex growth upstream of the hyperbolic contraction was used with good accuracy and reproducibility to assess the relaxation time for the less concentrated Boger fluids, for which CaBER measurements are difficult to perform.
ORCID iDs
Campo-Deaño, Laura, Galindo-Rosales, Francisco J, Pinho, F.T., Alves, M.A. and Oliveira, Monica ORCID: https://orcid.org/0000-0002-1836-4692;-
-
Item type: Article ID code: 41344 Dates: DateEventNovember 2011Published23 August 2011Published OnlineSubjects: Technology > Mechanical engineering and machinery Department: Faculty of Engineering > Mechanical and Aerospace Engineering
Technology and Innovation Centre > Advanced Engineering and ManufacturingDepositing user: Pure Administrator Date deposited: 03 Oct 2012 15:17 Last modified: 05 Jan 2025 12:28 URI: https://strathprints.strath.ac.uk/id/eprint/41344