Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Numerical solutions for lunar orbits

Vasile, Massimiliano and Finzi, Amalia E. (1997) Numerical solutions for lunar orbits. In: 48th International Astronautical Congress, 1997-10-06 - 1997-10-10.

[img] PDF
Vasile_M_Pure_Numerical_solutions_for_lunar_orbits_Oct_1997.pdf
Preprint

Download (529kB)

Abstract

Starting from a variational formulation based on Hamilton’s Principle, the paper exploits the finite element technique in the time domain in order to solve orbital dynamic problems characterised by constrained boundary value rather than initial value problems. The solution is obtained assembling a suitable number of finite elements inside the time interval of interest, imposing the desired constraints, and solving the resultant set of non-linear algebraic equations by means of Newton-Raphson method. In particular, in this work this general solution strategy is applied to periodic orbits determination. The effectiveness of the approach in finding periodic orbits in the unhomogeneous gravity field of the Moon is assessed by means of relevant examples, and the results are compared with those obtained by standard time marching techniques as well as with analytical results.