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Abstract 

Starting from a variational formulation based 

on Hamilton’s Principle, the paper exploits the 

finite element technique in the time domain in 

order to solve orbital dynamic problems 

characterised by constrained boundary value 

rather than initial value problems. The solution is 

obtained assembling a suitable number of finite 

elements inside the time interval of interest, 

imposing the desired constraints, and solving the 

resultant set of non-linear algebraic equations by 

means of Newton-Raphson method. In particular, 

in this work  this general solution strategy is 

applied to  periodic orbits determination. The 

effectiveness of the approach in finding periodic 

orbits in the unhomogeneous gravity field of the 

Moon is assessed by means of relevant examples, 

and the results are compared with those obtained 

by standard time marching techniques as well as 

with analytical results. 

 

Introduction 
The European programme for the exploration 

and scientific utilisation of the Moon  proposes 

the  injection of a probe into a low polar orbit. 

This class of missions being characterised by the 

strongly unhomogeneous lunar gravity field, the 

resulting perturbations could lead to rapid orbital 

decay and jeopardise the proper functioning of the 

equipment. Suitable methods and analysis tools to 

reliably and effectively address the problem of 

mission design become then of primary 

importance. 

For most applications concerning Earth orbital 

dynamics, only the first term of the potential field 

are significant.Quite differently, a rather large 

number of terms must be taken into account in the 

Moon case and this makes the expression of the 

perturbing function complicate and the equations 

of motion strongly non-linear. 
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The integration is therefore more difficult, a 

general solution to the problem in closed form 

cannot be obtained and a numerical integration is 

actually necessary. 

Most of the numerical approaches proposed in 

the literature
1
 consider celestial mechanics 

problems as initial value problems for non-linear 

Ordinary Differential Equations (ODEs). By this 

approach very complex expressions of the 

gravitational potential and highly sophisticated 

models of non-conservative forces acting on the 

system can be afforded, however, the validity of 

these methods is limited by the initial conditions 

and period, selected for the integration. 

In this paper, a novel methodology trying to 

remove these two limits is presented being many 

interesting problems in mission design indeed 

constrained boundary value (rather than initial 

value) problems for ODEs. A typical example are  

periodic orbits, which periodicity constraint can 

be considered as a boundary (initial and final 

time) condition on the state of the system. Other 

typical examples are orbital transfers and the 

related trajectory  moves from one orbit to 

another, usually satisfying some optimality 

criterion. The use of the method of finite elements 

in time (FET) for the solution of constrained or 

un-constrained boundary value problems for 

orbital dynamics is here proposed. Instead of 

usual propagation,  selecting a particular solution 

through the initial conditions and studying its 

evolution in time, a different philosophy is 

adopted, selecting a particular characteristic 

forced as a constraint. Then we look for solutions  

satisfying the condition imposed. The numerical 

solution is obtained discretising the time domain 

through the assembly of a suitable number of 

finite elements of appropriate order, and then 

imposing the relevant conditions. 

As goal of this work is to test the applicability 

and effectiveness of the methodology, in the 

following we restrict our attention to the 

determination of periodic orbits in an 



 

unhomogeneous gravity field, neglecting 

optimality or other constraint conditions. 

To this aim a model of the perturbing function, 

expressed in terms of spherical harmonics and 

orbital parameters and the equations of orbital 

dynamics in Poincarè parameters and Cartesian 

coordinates are presented. After that frozen and 

periodic orbits are briefly discussed and the 

method of Finite and Spectral Elements in Time 

introduced . Then the weak form of the problem 

according to Hamilton’s Principle is formulated 

and results obtained in a number of representative 

numerical simulations are presented. 

 

The Moon Gravity Filed 

The potential of the lunar gravity field given 

as expansion into spherical harmonics is a sum of  

the potential of a sphere and the perturbation 

accounting for all the deviations of a real body 

from a sphere
4
:  
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Figure 1. Spherical coordinates in a selenocentric 

reference frame: (X’,Y’,Z’) body fixed, (X,Y,Z) 

inertial. 

The perturbing function can be expressed as a 

function of the usual keplerian orbital elements 

(a,e,I,,,M) and expanded as follows: 

(2) 
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where  is the phase of the lunar rotation (see 

Figure 1), namely the angle between some body 

fixed direction along the equator (X’) and some 

inertial direction along the equator (X). 

In (3) terms with l-2p+q0 (i.e., those 

containing the mean anomaly M) are very short 

periodic terms, those with l-2p+q=0 but m0 (i.e. 

those containing m) are medium periodic terms 

while those with both l-2p+q=0 and m=0 are 

long periodic terms. 

 

Equations of Perturbed  Motion 

To integrate the Hamilton system that governs 

the perturbed orbital motion the problem in a 

canonical set of coordinates must be formulated. 

As stated in the introduction most of the future 

lunar missions involve low polar orbiters. For this 

class of missions eccentricities must be small to 

avoid hard landing at periselenium. Low 

eccentricities, in turn, require non singular 

variables for e=0. Therefore we use two non-

singular set of coordinate for solutions 

computations: Cartesian coordinates and Poincarè 

parameters. 

Medium and long period terms (with Poicarrè 

parameters) are  integrated and increased by short 

period effects the correction being performed in 

Cartesian coordinates. After the integration 

process we transform both Poicarrè parameters 

and Cartesian coordinate into the commonly used 

set of semiequinotial elements
5
: 

 

h e k e sin      = cos ;               (4) 
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Figure 2. Geometrical interpretation of the harmonic coefficients. White areas represent elevations above 

and black areas represent depression with respect to the mean spherical surface of the body. 

Poincarè Non-singular Canonical Parameters 

Formulation 

In order to study medium and long period 

perturbations classical Keplerian parameters are 

transformed into a suitable canonical set of 

variables that are non-singular for e=0. 

The coordinate system used (introduced by 

Poincarè
3
 ) is: 
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the perturbation function written in the new 

variables set being: 
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and the Hamilton function: 
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Removing very short period perturbation, 

characterised by the terms  with l-2p+q=0, by  

means of an averaging process over an orbital 

period, the perturbing function reduces to: 

 ( 8 ) 
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Notice that the variable L does not play any 

role because the force function does not depend 

on the fast variable , therefore the  dynamics of 

medium and long period perturbations is 

described by four equations: 

dE
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Cartesian Coordinates Formulation 
As mentioned before short period  perturbation 

are integrated in Cartesian coordinate. The 

perturbing function in this set of coordinates is: 

( 11 ) 
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and Hamilton’s function: 
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The Frozen Solutions 

Previous to the following analysis of periodic 

solutions we search for frozen solutions of the 

system (10), namely solutions that do not present 

any long period variations of eccentricity, 

argument of the periapsis and inclination. 

Thus we remove medium period perturbation 

from (8), e.g. terms with m0. Therefore the 

perturbing function contains only the so called 

‘zonal’ harmonics of the gravity field (Figure 2). 

In this averaged force field the component of 

the angular momentum along the lunar polar axis 

is an integral of motion: 

dH

dt
H a e i tM    0 1 2 ( ) cos cos .   (16) 

thus a separate equation of motion for i is not 

needed and we can reduce to: 
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The first one is satisfied for 
13 =/2, while 

the second one can be solved numerically for E. 

Using the values of E and  is then possible to 

compute the  value for e by the following 

equation: 

e
L

L E E   
1

2
4 2 2 2 2( )( )        ( 18) 

Frozen values of e and  as a function of the 

inclination are plotted in Figure 4 and compared 

with  analytical ones
2
. The two solutions are in 

good agreement for all the inclination angles apart 

from critical inclinations where the eccentricity 

dramatically grows and linearised analytical 

theory are not enough accurate. It should be noted 

that generally equation (17) doesn’t have only one 

solution. However solutions corresponding to 

high eccentricity values are not generally suitable 

for a low altitude orbiter. In fact
13

 this solution 

become practicable for altitude above 3000 km.  

In order to determine the minimum number of 

harmonics degree giving a reliable frozen solution 

in Figure 3  frozen eccentricities as a function of 

zonal harmonics degree, for an inclination of 90 

degrees and an altitude of 100 km, are plotted and 

the plot shows that 21 harmonics at least must be 

considered. 

 

10 30 50
0 20 40 60

Zonal Harmonics Number

1.0E-2

3.0E-2

5.0E-2

7.0E-2

9.0E-2

0.0E+0

2.0E-2

4.0E-2

6.0E-2

8.0E-2

F
ro

z
e
n
 E

c
c
e
n

tr
ic

it
y
 

 
Figure 3. Frozen eccentricity as a function of the 

harmonic degree, a=1838 km, i=90°. 
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inclination. Zonal gravity field up to J40, 

a=1838km  
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Figure 5. Frozen argument of the periapsis as a 

function of inclination. Zonal gravity field up to 

J40, a=1838 km. 

The SET Approach 

Hamilton’s Principle implementation in 

numerical approaches for dynamics dates back to 

more than 25 years ago
7,8

 . A complete review of 

the literature devoted to the finite element method 

in the time domain is beyond the scopes of this 

work, however it seams important to stress that 

the method has been successfully applied to a 

large number of problems in computational 

mechanics, spacing from rigid body dynamics to 

structural mechanics, wave propagation, fluid 

dynamics and optimal control
9,10

. 

In this paper we propose a slightly different 

approach using, instead of FET, Spectral 

Elements in Time (SET) a high-order finite 

element technique that combines the geometric 

flexibility of finite elements with the high 

accuracy of spectral methods. The method,  

pioneered in the mid 1980's by Anthony Patera
11

 

at MIT for fluid dynamics problems, is here 

applied to the integration of ODEs in the time 

domain being spectral elements in time more 

accurate and efficient in finding the solution for 

our problems  involving less memory space and 

less computational cost. 

Both FET and Spectral Elements methods 

offer some interesting features that make them 

attractive in automated numerical procedures:  

 Using a time assembly process, they allow 

the solution of general boundary-value 

problems. Besides the computation of the 

system response, this technique provides at 

a negligible extra computing cost an 

approximation of the transition matrix that 

allows to perform a linearised stability 

analysis of the solution
9
.  

 Through the use of spectral basis for shape 

functions, high order methods can be 

constructed, therefore allowing the 

development of automated p and hp 

adaptive procedures. 

 The variational framework is an ideal 

context for developing constrained 

formulations for mechanics
10

, leading to 

schemes characterised by robust numerical 

behaviour. As stated in the Introduction, 

the ability to impose constraint conditions 

of different nature on the orbital boundary 

value problem, is a key ingredient of a 

general mission design tool.  

Both the Lagrangian (single-field) and the 

Hamiltonian (mixed two-field) formulations of 

the FET method can be developed. Since the late 

is usually associated with superior numerical 

properties
10

, in the following we restrict our 

discussion to the mixed two-field case. 

 

Solution of Orbital Problems by the SET 

In order to apply the SET method in mixed 

two-field form to the problems of orbital 

dynamics we utilise a set of generalised 

coordinates q, momenta p, non-conservative 

generalised forces Q and Hamiltonian function 

=(q,p): 
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In conservative problems, as is the case, non-

conservative forces Q disappear. 

Equations (15) are supplemented by the 

boundary conditions: 
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where (.)
b
 denotes boundary values and ti and tf 

are boundary times. It is important to realise that, 

given a specific problem class (initial or boundary 

value) only a suitable subset of these quantities 



 

are prescribed, while the others are to be regarded 

as additional unknowns. 

Equations (19) and (20) can be cast in a 

weighted residual form, which after integration by 

parts, yields Hamilton’s Law in mixed two-field 

form: 

( 21) 
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The variational principle (21) is the weak form 

of the differential problem given by (19) and (20). 

This synchronous formulation provides the base 

for the development of the SET methods for 

general boundary problems, where the integration 

time domain is known a priori. However in many 

problems of orbital mechanics time can be 

regarded as an additional unknown. In this case, 

the asynchronous version of Hamilton’s Law can 

be derived and used for developing parametric 

versions of the SET method. 

Now let the time domain D(ti,tf) be 

decomposed into N  finite time elements: 

D D t tj

N
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The parametric approximations of the trial 

functions (q,p) and test functions (q,p) are 

developed within the space of the polynomials of 

order k-1 and k respectively: 
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where the functions f and g are defined as follow: 
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and the quantities qs and ps are internal node 

values. 

In a more general way we could decompose de 

domain D as a union of smooth images of the 

reference time interval [-1,1] where we define a 

reference parameter : 
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 The basis functions  f and g can be 

constructed by using Lagrangian interpolants 

associated with the internal Gauss-Lobatto node
12

. 

Thus if i 
k

i=1 are the set of Gauss-Lobatto 

points on the reference interval [-1,1],  fi() will 

be the Lagrangian interpolating polynomial 

vanishing at all the Gauss-Lobatto node except at 

i where it equals one. 

Each integral of the continuous form (21) is 

then replaced by a Gauss quadrature sum: 
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where i  is the weight associated with i. 

By the discrete form  (26) two distinct 

procedures can be derived:  

 An implicit step-by-step self-starting 

integration  obtained for initial value problems  

 An assembled process developed for boundary 

value problems, obtained by matching the final 

boundary state of each element with the initial 

state of the subsequent element. 

Both the approach are taken into account in this 

effort, and the resulting non-linear algebraic 

equations can be linearised with the help of 

Newton-Raphson method to yield: 

 

)()()( eee RuJ                ( 27 ) 

 

where J(e) is the elemental tangent matrix, R(e) 

the elemental residual vector, u(e)=(p,q)(e) are 

increments to nodal momenta and nodal 

coordinates, while the subscript (.)(e) refers to 

elemental quantities. The global matrix 

formulation can then be obtained through the 

standard finite element assembly process 

performed on the corresponding elemental 

matrices: 

 

RuJ                          ( 28 ) 

 

The Periodic Constraint 

As previously stated given the importance of 

periodic orbits in several celestial mechanics 

problems, we look for solutions that satisfy the 

constraint of periodicity. This constraint requires 

that the final state vector (q
b

f,p
b

f) is equal to the 



 

initial state vector (q
b
i,p

b
i). It could be handled as 

a general homogeneous boundary-conditions 

problem for the differential system (19), by the 

equations: 

q q

p p

f

b

i

b

f

b

i

b




                            ( 29 ) 

The tangent matrix J is generally a sparse 

structure matrix as shown in Figure 6. For the 

solution of the linear system (28) a 

preconditioned GMRS sparse matrix solver with 

CRS (Compressed Row Format) storage of the 

matrix is used. 

 
Figure 6. Assembled tangent matrix for a 4 

elements system in Cartesian coordinates and for 

a tesseral gravity field. 

Stability Analysis of  Periodic Orbits 

The stability of any periodic solution got from 

the assembled process can now be afforded by the 

linearised stability analysis proposed in 
9
. 

Starting from: 

A X K B  i                  ( 30 ) 

where the vector X is defined as follows: 

   X X B i f

T

,            ( 31 ) 

the two vectors Bi and Bf are perturbations 

respectively of the initial and final boundary 

values while  Xi  are the variations of the 

internal nodes, and remembering that matrixes A 

and K can be easily obtained by a pertition of the 

matrix J: 

J
K A

J J











i f

                  ( 32) 

inverting the matrix A (which is an upper 

triangular matrix) we get: 

   X B A K Bi f

T

i,  1
            ( 33) 

Finally  the transition matrix T between the 

initial and the final state can be derived: 

 B T Bf i                  ( 34 ) 

As in the Floquet theory, we search for 

recurring solutions of equation (30) such as 

 B Bf i                    ( 35 ) 

which leads to an eigenvalue problem that can be 

directly solved in the range of the highest  of 

interest. Eigenvalues  and the corresponding 

eigenvectors are in general pairs of complex 

conjugate ones. Moreover, an approximation of 

each complex eigensolution at nodal points can be 

given by the solution of equation (35), by using 

the corresponding eigenvalue and eigenvector
9
. 

 When the interest is focused on limit stability, 

the sole eigenvalue analysis is required. In fact 

stability is provided by the condition   1 where 

 is the modulus of the eigenvalue . 

Numerical Simulations 

To verify the effectiveness of the proposed 

methodology in the following some meaningful 

tests problems are presented for comparison with 

both analytical and numerical solutions. Being the 

method  completely independent from the 

potential function, all the examples here 

presented refer to Lemoine’s gravity model
5
 

GLGM-2. 

 

Accuracy Analysis 
In figure 7 the degrees of freedom that we 

need to achieve a relative error of 1e-5 on the 

periodic solution for different zonals gravity 

fields are plotted. The plot shows clearly that 

increasing the complexity of the gravity field the 

order of the method must be increased to achieve 

the same accuracy with the same computational 

cost (i.e. the same number of degrees of freedom) 

and this  confirm the usefulness of spectral 

elements for the solution of our problem. 
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Figure 7. Degrees of Freedom to achieve a 

desired accuracy as  function of  zonal degrees. 

 

Periodic Solution in a Zonal Gravity Field 

The ability to identify periodic solutions in 

a zonal gravity field taking into account both 

long and short period perturbations is tested. 

For this particular problem the only possible 

periodic solution are orbits with an inclination 

of 90° degrees whole within the initial orbital 

plane. Thus we relax the periodicity 

constrained (24) forcing the initial state vector 

to be exactly on one of the pole: 
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;

;  

              ( 36 ) 

The force field depends on the positions, 

thus the three constraints on the è position 

components and the one on the z component of 

the velocity, which provides the periodicity on 

the versus of the velocity, guarantee the 

complete periodicity of the final solution.  

  In Figure 8 we present the periodic 

solution obtained by this innovative approach. 

In order to validate the results, we use the 

value of the solution at time ti=0 as an initial 

state and we integrate using a 7-8th order 

Runge-Kutta-Fehlberg (RK) method with 

adaptive time stepping. The result obtained 

with the Runge-Kutta  integration is presented 

as a solid line in Figure 8.  

The FET and the Runge-Kutta solution 

appear to be in very good agreement. The 

solution of this problem should be a frozen 

orbit, since periodic orbits are certainly frozen 

because they do not present any long period 

variations. Thus for further validation of the 

new methodology, the mean eccentricity and 

the mean argument of the periapsis are 

computed and  compared to ones computed in  

frozen analysis. By calculation  frozen solution 

gives e=0.00909 and =90, while the SET 

gives e=0.009089 and =90.0000007.  

These values prove that a periodic frozen 

orbit was found as proved by figure 8 showing 

the solution in semi-equinotial coordinates 

obtained with 10 elements and polynomials of 

the 11th order: in the plane h-k the solution is 

a closed trajectory around the mean values for 

e and  and moves clockwise along the curve. 
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Figure 8. Periodic solution, h-k plane:  40x0 

zonal gravity model. Integration period 

7070.93s. 
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Figure 9. Periodic semimajor axis: 40x0 zonal 

gravity  model. Integration period 7070.93s. 



 

We can underline also that, as can be 

noticed from Figure 9, the mean semi-major 

axis found by the SET method is smaller then 

the unperturbed  one. In fact perturbations due 

to zonal harmonics increase the mean 

revolution period for polar orbits
1
. Therefore 

closed orbits with a period equal to the 

reference one require shorter mean semi-major 

axis according to its relation with the mean 

motion. 

 

Periodic Solutions in a Tesseral Gravity Field 
We are now searching for periodic solutions in 

a tesseral gravity field. 

Being the rotation period of the moon of 

29.3216 sidereal days. This means that a satellite 

sees the same gravity field every 29.3216 days. 

Thus in a tesseral gravity field containing terms 

characterised by the index m0 that take care of 

this rotational motion, as was shown in equation 

(3), a periodic solution could be found integrating 

over a period of at least 29.3216 days. 

The wide spectrum of frequencies introduced 

by the perturbing function and the wide 

integration period lead to a large number of 

spectral elements necessary to follow correctly 

the dynamics of the problem. Thus at first the 

dynamics of mean parameters is solved and then 

short period perturbations added. 

 
Mean Motion Analysis 

By remotion of very short period perturbations 

the dynamics of periodic orbits can be studied 

with a relative low number of elements. 

The first test afforded is a periodic mean orbit 

in a 6x6 gravity field. We use 22 spectral 

elements with polynomial of order 7 and we force 

the periodicity constraints: 

 

E E

H H

i

b

f

b

f

b

i

b

f

b

 



; ;     i
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            ( 37 ) 

A further periodicity constraint could be 

forced on the anomaly of the ascending node for 

polar orbits only: 

 i
b

f
b ;                       ( 38 ) 

 In fact for these orbits there is no secular 

motion of the ascending node. For different 

inclinations, orbits can not be closed and the 

constraint (38) becomes: 

 

  i
b

f
b  ;                  ( 39 ) 

Where the term  takes care of the 

precession motion. 

The solution for a polar orbit is shown in 

figure 10. Now short period perturbations are 

added and starting from the periselenium at t=0 

(=0), we  propagate  over 58.6422 days using the 

SET time marching algorithm with a fixed time 

step of 835.2s. The solution is represented in 

figure 11 ( h and k parameters) and in figure 12 (i 

and  parameters). 

As second test we study a 21x21 gravity field 

using 50 elements with polynomials of 10th order  

and the results for mean elements are plotted in 

figure 12. Then we propagate short period 

perturbations using fixed time step of 707.9 s  and 

we plot results for mean elements in figure 13 and 

for osculating elements in figures 14 and 15.  By 

comparison the frozen solution with the mean 

elements values found with periodic solutions, 

reported in table 1 and 2, we conclude that also in 

these two cases we found a periodic frozen orbit. 

It should be noted that both these solutions are  

unstable: a small variation in the mean value of 

the inclination giving a secular term in the 

dynamics of the ascending node (precession of 

the ascending node) and  brakes the periodicity of 

the solution. 

This instability is however very weak as it is 

confirmed by the stability analysis which gives 

the highest eigenvalues close to one for both the 

solutions computed: max =1.0006. 

The effects of this instability are well 

represented in figure 12 and 15 where the 

precession of the ascending node, due to 

perturbations given by short period terms, is 

evident. The difference between the initial and 

final value of the ascending node is however quite 

small for both the examples. 

Table 1. Comparison between frozen and 

periodic solution for a 6x6 gravity field: mean 

values. 

 e  

Periodic 3.9826e-2 -90.0001 

Frozen 3.98264e-2 -90 

Table 2. Comparison between frozen and 

periodic solution for a 21x21 gravity field: mean 

values. 

 e  

Periodic 9.2226e-3 90.00016 

Frozen 9.2224e-3 90 
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Figure 10. Mean h-k plane, periodic solution, 6x6  

model, a=1838.96364 km, i=90°. 
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Figure 11. Osculating h-k plane, quasi-periodic 

solution, 6x6   model, propagation over 58 days . 
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Figure 12. Osculating I- plane, quasi-periodic 

solution, 6x6  model, propagation over 58 days 
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Figure 13. Mean h-k plane, periodic solution, 

21x21 model. 
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Figure 14. Osculating h-k plane, quasi-periodic 

solution, 21x21  model, propagation over 29 days. 
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Figure 15. Osculating I- plane, quasi-periodic 

solution, 21x21  model, propagation over 29 days 



 

Final Remarks 

In this paper a novel approach to the numerical 

solution of a certain class of orbital dynamic 

problems is presented. The inspiring idea of the 

method is the use of SET formulation for 

constrained boundary-value problems for non-

linear ODEs. This method is expected to be a 

valid and reliable tool for the mission designer.  

Even if the results achieved in this study are to 

be considered preliminary, however they provide 

evidence of the effectiveness of the new 

approach: in fact all the results obtained by the 

SET methodology are confirmed both by the 

analytical solutions and the usual numerical 

propagation. 

This results open the way to a range of 

interesting future developments, aimed to 

enhancing the effectiveness of the method and at 

broadening its applicability to more complex 

problems among which the use of global 

optimisation methods is at present being studied. 
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