Picture of smart phone

Open Access research that is better understanding human-computer interaction...

Strathprints makes available scholarly Open Access content by researchers in the Department of Computer & Information Sciences, including those researching information retrieval, information behaviour, user behaviour and ubiquitous computing.

The Department of Computer & Information Sciences hosts The Mobiquitous Lab, which investigates user behaviour on mobile devices and emerging ubiquitous computing paradigms. The Strathclyde iSchool Research Group specialises in understanding how people search for information and explores interactive search tools that support their information seeking and retrieval tasks, this also includes research into information behaviour and engagement.

Explore the Open Access research of The Mobiquitous Lab and the iSchool, or theDepartment of Computer & Information Sciences more generally. Or explore all of Strathclyde's Open Access research...

Zinc-blende and wurtzite AlxGa1-xN bulk crystals grown by molecular beam epitaxy

Novikov, S. V. and Staddon, C. R. and Luckert, F. and Edwards, P. R. and Martin, R. W. and Kent, A. J. and Foxon, C. T. (2012) Zinc-blende and wurtzite AlxGa1-xN bulk crystals grown by molecular beam epitaxy. Journal of Crystal Growth, 350 (1). pp. 80-84. ISSN 0022-0248

[img]
Preview
PDF
JCG_350_80_Novikov_Zb_W_AlGaN.pdf
Final Published Version
License: Unspecified

Download (270kB) | Preview

Abstract

There is a significant difference in the lattice parameters of GaN and AlN and for many device applications AlxGa1-xN substrates would be preferable to either GaN or AlN. We have studied the growth of free-standing zinc-blende and wurtzite AlxGa1-xN bulk crystals by plasma-assisted molecular beam epitaxy (PA-MBE). Thick (similar to 10 mu m) zinc-blende and wurtzite AlxGa1-xN films were grown by PA-MBE on 2-in. GaAs (0 0 1) and GaAs (1 1 1)B substrates respectively and were removed from the GaAs substrate after the growth. We demonstrate that free-standing zinc-blende and wurtzite AlxGa1-xN wafers can be achieved by PA-MBE for a wide range of Al compositions. (C) 2011 Elsevier B.V. All rights reserved.