Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Nature and origin of V-defects present in metalorganic vapor phase epitaxy-grown (InxAl1-x)N layers as a function of InN content, layer thickness and growth parameters

Vennegues, P. and Diaby, B. S. and Kim-Chauveau, H. and Bodiou, L. and Schenk, H. P. D. and Frayssinet, E. and Martin, R. W. and Watson, I. M. (2012) Nature and origin of V-defects present in metalorganic vapor phase epitaxy-grown (InxAl1-x)N layers as a function of InN content, layer thickness and growth parameters. Journal of Crystal Growth, 353 (1). pp. 108-114. ISSN 0022-0248

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Our study of samples grown in different metalorganic chemical vapor deposition reactors and with different growth conditions reveals that V-pits are always present in (InxAl1-x)N films whatever the layer thickness and the InN content. V-pits are empty inverted pyramids terminating threading dislocations. InN-rich triangular regions are present around the threading dislocations terminated by pits with a hexagonal 6-fold symmetry distribution in {11 - 20} planes. The nature of the facets of the V-pits depends on the growth conditions: pits with either {11 - 2l}, I being between 1 and 3, or {1 - 101} facets have been observed. Moreover, the nature of the threading dislocations terminated by pits also depends on the growth conditions. Our observations suggest that with a high V/III ratio only edge a + c-type dislocations are terminated by pits whereas with a low V/III ratio both edge a-type and mixed a + c-type dislocations are terminated by pits.