Picture of classic books on shelf

Literary linguistics: Open Access research in English language

Strathprints makes available Open Access scholarly outputs by English Studies at Strathclyde. Particular research specialisms include literary linguistics, the study of literary texts using techniques drawn from linguistics and cognitive science.

The team also demonstrates research expertise in Renaissance studies, researching Renaissance literature, the history of ideas and language and cultural history. English hosts the Centre for Literature, Culture & Place which explores literature and its relationships with geography, space, landscape, travel, architecture, and the environment.

Explore all Strathclyde Open Access research...

Nature and origin of V-defects present in metalorganic vapor phase epitaxy-grown (InxAl1-x)N layers as a function of InN content, layer thickness and growth parameters

Vennegues, P. and Diaby, B. S. and Kim-Chauveau, H. and Bodiou, L. and Schenk, H. P. D. and Frayssinet, E. and Martin, R. W. and Watson, I. M. (2012) Nature and origin of V-defects present in metalorganic vapor phase epitaxy-grown (InxAl1-x)N layers as a function of InN content, layer thickness and growth parameters. Journal of Crystal Growth, 353 (1). pp. 108-114. ISSN 0022-0248

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Our study of samples grown in different metalorganic chemical vapor deposition reactors and with different growth conditions reveals that V-pits are always present in (InxAl1-x)N films whatever the layer thickness and the InN content. V-pits are empty inverted pyramids terminating threading dislocations. InN-rich triangular regions are present around the threading dislocations terminated by pits with a hexagonal 6-fold symmetry distribution in {11 - 20} planes. The nature of the facets of the V-pits depends on the growth conditions: pits with either {11 - 2l}, I being between 1 and 3, or {1 - 101} facets have been observed. Moreover, the nature of the threading dislocations terminated by pits also depends on the growth conditions. Our observations suggest that with a high V/III ratio only edge a + c-type dislocations are terminated by pits whereas with a low V/III ratio both edge a-type and mixed a + c-type dislocations are terminated by pits.