Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Calcium/calmodulin-dependent protein kinase II activity is increased in sarcoplasmic reticulum from coronary artery ligated rabbit hearts

Currie, S and Smith, G L (1999) Calcium/calmodulin-dependent protein kinase II activity is increased in sarcoplasmic reticulum from coronary artery ligated rabbit hearts. FEBS Letters, 459 (2). pp. 244-248. ISSN 0014-5793

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A protein kinase activity intrinsic to the sarcoplasmic reticulum was studied in normal and hypertrophied rabbit hearts. The relationship between this kinase activity and phospholamban phosphorylation was examined. Calmodulin-dependent kinase II activity was found to be increased in sarcoplasmic reticulum preparations from hypertrophied hearts compared with normal. This was evident by measuring the phosphotransferase activity of the kinase and also by examining phospholamban phosphorylation by electrophoretic band shift analysis. Increased phospholamban phosphorylation by Calmodulin-dependent protein kinase II was dependent on prior phosphorylation by cAMP-dependent protein kinase, indicating potential crosstalk. Specific immunoblot analysis of the rabbit sarcoplasmic reticulum identified the presence of the delta form of calmodulin dependent protein kinase II and showed it to be up-regulated in hypertrophied hearts.