Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

New breed of network fault-tolerant voltage-source-converter HVDC transmission system

Adam, Grain Philip and Ahmed, Khaled and Finney, Stephen and Bell, Keith and Williams, Barry (2013) New breed of network fault-tolerant voltage-source-converter HVDC transmission system. IEEE Transactions on Power Systems, 28 (1). 335 - 346. ISSN 0885-8950

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper proposes a new breed of high-voltage dc (HVDC) transmission systems based on a hybrid multilevel voltage source converter (VSC) with ac-side cascaded H-bridge cells. The proposed HVDC system offers the operational flexibility of VSC-based systems in terms of active and reactive power control, black-start capability, in addition to improved ac fault ride-through capability and the unique feature of current-limiting capability during dc side faults. Additionally, it offers features such as smaller footprint and a larger active and reactive power capability curve than existing VSC-based HVDC systems, including those using modular multilevel converters. To illustrate the feasibility of the proposed HVDC system, this paper assesses its dynamic performance during steady-state and network alterations, including its response to ac and dc side faults.