Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

A first approach to a design method for resonant gate driver architectures

Anthony, Philip and McNeill, Neville and Holliday, Derrick (2012) A first approach to a design method for resonant gate driver architectures. IEEE Transactions on Power Electronics, 27 (8). 3855 - 3868. ISSN 0885-8993

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper proposes a general circuit model and design method for resonant gate drivers. Topologies in the literature are analyzed by dividing each switching transient into up to five energy transfer stages, for which general analytical equations are derived. A general resonant gate driver circuit model is presented. Several reviewed topologies are identified as unique combinations of current paths within this circuit model, providing a basis for classification. This establishes a relationship between topology performance and architecture, which is verified experimentally using a reconfigurable test circuit.