Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Studies of surface two-dimensional photonic band-gap structures

Cross, A W and Konoplev, I V and Phelps, A D R and Ronald, K (2003) Studies of surface two-dimensional photonic band-gap structures. Journal of Applied Physics, 93 (4). pp. 2208-2218. ISSN 0021-8979

[img] PDF (Surface_Photonic_Bandgap_2003_J_Appl_Physics_Cross_et_al)
Surface_Photonic_Bandgap_2003_J_Appl_Physics_Cross_et_al.pdf - Final Published Version

Download (289kB)

Abstract

Two-dimensional (2D) surface photonic band-gap (SPBG) structures can be obtained by providing a shallow corrugation of the inner surface of a waveguide wall. It can be used as a distributed mirror, a cavity, or a filter in integrated optics or microwave electronics. These structures can also be an alternative to conventional 2D PBG or 1D Bragg structures. In this article, we present the results of theoretical and experimental studies of 2D SPBG structures. Data obtained from experiments are compared with theoretical results and good agreement between theory and experiment is demonstrated. Comparison of a coaxial 2D SPBG structure with a conventional 1D Bragg structure is also presented.